IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v92y2015icp26-39.html
   My bibliography  Save this article

Simulation-based fully Bayesian experimental design for mixed effects models

Author

Listed:
  • Ryan, Elizabeth G.
  • Drovandi, Christopher C.
  • Pettitt, Anthony N.

Abstract

Bayesian inference has commonly been performed on nonlinear mixed effects models. However, there is a lack of research into performing Bayesian optimal design for nonlinear mixed effects models, especially those that require searches to be performed over several design variables. This is likely due to the fact that it is much more computationally intensive to perform optimal experimental design for nonlinear mixed effects models than it is to perform inference in the Bayesian framework. Fully Bayesian experimental designs for nonlinear mixed effects models are presented, which involve the use of simulation-based optimal design methods to search over both continuous and discrete design spaces. The design problem is to determine the optimal number of subjects and samples per subject, as well as the (near) optimal urine sampling times for a population pharmacokinetic study in horses, so that the population pharmacokinetic parameters can be precisely estimated, subject to cost constraints. The optimal sampling strategies, in terms of the number of subjects and the number of samples per subject, were found to be substantially different between the examples considered in this work, which highlights the fact that the designs are rather problem-dependent and can be addressed using the methods presented.

Suggested Citation

  • Ryan, Elizabeth G. & Drovandi, Christopher C. & Pettitt, Anthony N., 2015. "Simulation-based fully Bayesian experimental design for mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 26-39.
  • Handle: RePEc:eee:csdana:v:92:y:2015:i:c:p:26-39
    DOI: 10.1016/j.csda.2015.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001450
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Ryan, Elizabeth G. & Drovandi, Christopher C. & Thompson, M. Helen & Pettitt, Anthony N., 2014. "Towards Bayesian experimental design for nonlinear models that require a large number of sampling times," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 45-60.
    3. Jonathan R. Stroud & Peter Müller & Gary L. Rosner, 2001. "Optimal sampling times in population pharmacokinetic studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 345-359.
    4. Cong Han & Kathryn Chaloner, 2004. "Bayesian Experimental Design for Nonlinear Mixed-Effects Models with Application to HIV Dynamics," Biometrics, The International Biometric Society, vol. 60(1), pages 25-33, March.
    5. Alex R. Cook & Gavin J. Gibson & Christopher A. Gilligan, 2008. "Optimal Observation Times in Experimental Epidemic Processes," Biometrics, The International Biometric Society, vol. 64(3), pages 860-868, September.
    6. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2004. "Generalized multilevel structural equation modeling," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 167-190, June.
    7. Christopher C. Drovandi & Anthony N. Pettitt, 2013. "Bayesian Experimental Design for Models with Intractable Likelihoods," Biometrics, The International Biometric Society, vol. 69(4), pages 937-948, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morgan, Joshua C. & Chinen, Anderson Soares & Anderson-Cook, Christine & Tong, Charles & Carroll, John & Saha, Chiranjib & Omell, Benjamin & Bhattacharyya, Debangsu & Matuszewski, Michael & Bhat, K. S, 2020. "Development of a framework for sequential Bayesian design of experiments: Application to a pilot-scale solvent-based CO2 capture process," Applied Energy, Elsevier, vol. 262(C).
    2. Walker, Stephen G., 2016. "Bayesian information in an experiment and the Fisher information distance," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 5-9.
    3. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2018. "Robust population designs for longitudinal linear regression model with a random intercept," Computational Statistics, Springer, vol. 33(2), pages 903-931, June.
    4. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    5. Hong-Yan Jiang & Rong-Xian Yue, 2019. "Pseudo-Bayesian D-optimal designs for longitudinal Poisson mixed models with correlated errors," Computational Statistics, Springer, vol. 34(1), pages 71-87, March.
    6. Price, David J. & Bean, Nigel G. & Ross, Joshua V. & Tuke, Jonathan, 2018. "An induced natural selection heuristic for finding optimal Bayesian experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 112-124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elizabeth G. Ryan & Christopher C. Drovandi & James M. McGree & Anthony N. Pettitt, 2016. "A Review of Modern Computational Algorithms for Bayesian Optimal Design," International Statistical Review, International Statistical Institute, vol. 84(1), pages 128-154, April.
    2. Dehideniya, Mahasen B. & Drovandi, Christopher C. & McGree, James M., 2018. "Optimal Bayesian design for discriminating between models with intractable likelihoods in epidemiology," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 277-297.
    3. Ryan, Elizabeth G. & Drovandi, Christopher C. & Thompson, M. Helen & Pettitt, Anthony N., 2014. "Towards Bayesian experimental design for nonlinear models that require a large number of sampling times," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 45-60.
    4. Price, David J. & Bean, Nigel G. & Ross, Joshua V. & Tuke, Jonathan, 2018. "An induced natural selection heuristic for finding optimal Bayesian experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 112-124.
    5. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    6. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    7. Fernandez-Cornejo, Jorge & Wechsler, Seth James, 2012. "Fifteen Years Later: Examining the Adoption of Bt Corn Varieties by U.S. Farmers," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124257, Agricultural and Applied Economics Association.
    8. David Hémous & Morten Olsen, 2022. "The Rise of the Machines: Automation, Horizontal Innovation, and Income Inequality," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(1), pages 179-223, January.
    9. Steven Andrew Culpepper & Herman Aguinis & Justin L. Kern & Roger Millsap, 2019. "High-Stakes Testing Case Study: A Latent Variable Approach for Assessing Measurement and Prediction Invariance," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 285-309, March.
    10. Ryan Mullins & Raj Agnihotri, 2022. "Digital selling: organizational and managerial influences for frontline readiness and effectiveness," Journal of the Academy of Marketing Science, Springer, vol. 50(4), pages 800-821, July.
    11. Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019. "Multilateral index number systems for international price comparisons: Properties, existence and uniqueness," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
    12. Cranfield, John A.L. & Preckel, Paul V. & Liu, Songquan, 1997. "Approximating Bayesian Posteriors using Multivariate Gaussian Quadrature," 1997 Annual Meeting, July 13-16, 1997, Reno\ Sparks, Nevada 35791, Western Agricultural Economics Association.
    13. Troske, Kenneth R. & Voicu, Alexandru, 2010. "Joint estimation of sequential labor force participation and fertility decisions using Markov chain Monte Carlo techniques," Labour Economics, Elsevier, vol. 17(1), pages 150-169, January.
    14. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    15. Mengheng Li & Ivan Mendieta‐Muñoz, 2020. "Are long‐run output growth rates falling?," Metroeconomica, Wiley Blackwell, vol. 71(1), pages 204-234, February.
    16. Arimura, Toshi H. & Darnall, Nicole & Katayama, Hajime, 2011. "Is ISO 14001 a gateway to more advanced voluntary action? The case of green supply chain management," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 170-182, March.
    17. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    18. Bauwens, Luc & Bos, Charles S. & van Dijk, Herman K. & van Oest, Rutger D., 2004. "Adaptive radial-based direction sampling: some flexible and robust Monte Carlo integration methods," Journal of Econometrics, Elsevier, vol. 123(2), pages 201-225, December.
    19. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:92:y:2015:i:c:p:26-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.