IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v126y2018icp112-124.html
   My bibliography  Save this article

An induced natural selection heuristic for finding optimal Bayesian experimental designs

Author

Listed:
  • Price, David J.
  • Bean, Nigel G.
  • Ross, Joshua V.
  • Tuke, Jonathan

Abstract

Bayesian optimal experimental design has immense potential to inform the collection of data so as to subsequently enhance our understanding of a variety of processes. However, a major impediment is the difficulty in evaluating optimal designs for problems with large, or high-dimensional, design spaces. An efficient search heuristic suitable for general optimisation problems, with a particular focus on optimal Bayesian experimental design problems, is proposed. The heuristic evaluates the objective (utility) function at an initial, randomly generated set of input values. At each generation of the algorithm, input values are “accepted” if their corresponding objective (utility) function satisfies some acceptance criteria, and new inputs are sampled about these accepted points. The new algorithm is demonstrated by evaluating the optimal Bayesian experimental designs for the previously considered death, pharmacokinetic and logistic regression models. Comparisons to the current “gold-standard” method are given to demonstrate the proposed algorithm as a computationally-efficient alternative for moderately-large design problems (i.e., up to approximately 40-dimensions).

Suggested Citation

  • Price, David J. & Bean, Nigel G. & Ross, Joshua V. & Tuke, Jonathan, 2018. "An induced natural selection heuristic for finding optimal Bayesian experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 112-124.
  • Handle: RePEc:eee:csdana:v:126:y:2018:i:c:p:112-124
    DOI: 10.1016/j.csda.2018.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318301002
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryan, Elizabeth G. & Drovandi, Christopher C. & Thompson, M. Helen & Pettitt, Anthony N., 2014. "Towards Bayesian experimental design for nonlinear models that require a large number of sampling times," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 45-60.
    2. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    3. Alex R. Cook & Gavin J. Gibson & Christopher A. Gilligan, 2008. "Optimal Observation Times in Experimental Epidemic Processes," Biometrics, The International Biometric Society, vol. 64(3), pages 860-868, September.
    4. Ryan, Elizabeth G. & Drovandi, Christopher C. & Pettitt, Anthony N., 2015. "Simulation-based fully Bayesian experimental design for mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 26-39.
    5. Christopher C. Drovandi & Anthony N. Pettitt, 2013. "Bayesian Experimental Design for Models with Intractable Likelihoods," Biometrics, The International Biometric Society, vol. 69(4), pages 937-948, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryan, Elizabeth G. & Drovandi, Christopher C. & Pettitt, Anthony N., 2015. "Simulation-based fully Bayesian experimental design for mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 26-39.
    2. Dehideniya, Mahasen B. & Drovandi, Christopher C. & McGree, James M., 2018. "Optimal Bayesian design for discriminating between models with intractable likelihoods in epidemiology," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 277-297.
    3. Elizabeth G. Ryan & Christopher C. Drovandi & James M. McGree & Anthony N. Pettitt, 2016. "A Review of Modern Computational Algorithms for Bayesian Optimal Design," International Statistical Review, International Statistical Institute, vol. 84(1), pages 128-154, April.
    4. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    5. Ryan, Elizabeth G. & Drovandi, Christopher C. & Thompson, M. Helen & Pettitt, Anthony N., 2014. "Towards Bayesian experimental design for nonlinear models that require a large number of sampling times," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 45-60.
    6. Futalef, Juan-Pablo & Di Maio, Francesco & Zio, Enrico, 2025. "A dynamic importance function for accidental scenarios generation by RESTART in the computational risk assessment of cyber-physical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    7. A. Shibu & M. Reddy, 2014. "Optimal Design of Water Distribution Networks Considering Fuzzy Randomness of Demands Using Cross Entropy Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4075-4094, September.
    8. M Caserta & E Quiñonez Rico, 2009. "A cross entropy-based metaheuristic algorithm for large-scale capacitated facility location problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(10), pages 1439-1448, October.
    9. Chan, Jianpeng & Papaioannou, Iason & Straub, Daniel, 2024. "Bayesian improved cross entropy method with categorical mixture models for network reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    10. Pagendam, D.E. & Pollett, P.K., 2010. "Robust optimal observation of a metapopulation," Ecological Modelling, Elsevier, vol. 221(21), pages 2521-2525.
    11. Altiparmak, Fulya & Dengiz, Berna, 2009. "A cross entropy approach to design of reliable networks," European Journal of Operational Research, Elsevier, vol. 199(2), pages 542-552, December.
    12. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    13. Alibrandi, Umberto, 2014. "A response surface method for stochastic dynamic analysis," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 44-53.
    14. Nguyen, Hoa T.M. & Chow, Andy H.F. & Ying, Cheng-shuo, 2021. "Pareto routing and scheduling of dynamic urban rail transit services with multi-objective cross entropy method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    15. R. Y. Rubinstein, 2005. "A Stochastic Minimum Cross-Entropy Method for Combinatorial Optimization and Rare-event Estimation," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 5-50, March.
    16. Kin-Ping Hui, 2011. "Cooperative Cross-Entropy method for generating entangled networks," Annals of Operations Research, Springer, vol. 189(1), pages 205-214, September.
    17. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    18. Tai-Yu Ma & Jean-Patrick Lebacque, 2012. "Dynamic System Optimal Routing In Multimodal Transit Network," Working Papers hal-00740347, HAL.
    19. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    20. Xi Chen & Enlu Zhou, 2015. "Population model-based optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 125-148, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:126:y:2018:i:c:p:112-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.