IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v50y2001i3p345-359.html
   My bibliography  Save this article

Optimal sampling times in population pharmacokinetic studies

Author

Listed:
  • Jonathan R. Stroud
  • Peter Müller
  • Gary L. Rosner

Abstract

We propose a simulation‐based approach to decision theoretic Bayesian optimal design. The underlying probability model is a population pharmacokinetic model which allows for correlated responses (drug concentrations) and patient‐to‐patient heterogeneity. We consider the problem of choosing sampling times for the anticancer agent paclitaxel, using criteria related to the total area under the curve, the time above a critical threshold and the sampling cost.

Suggested Citation

  • Jonathan R. Stroud & Peter Müller & Gary L. Rosner, 2001. "Optimal sampling times in population pharmacokinetic studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 345-359.
  • Handle: RePEc:bla:jorssc:v:50:y:2001:i:3:p:345-359
    DOI: 10.1111/1467-9876.00239
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00239
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryan, Elizabeth G. & Drovandi, Christopher C. & Thompson, M. Helen & Pettitt, Anthony N., 2014. "Towards Bayesian experimental design for nonlinear models that require a large number of sampling times," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 45-60.
    2. Dehideniya, Mahasen B. & Drovandi, Christopher C. & McGree, James M., 2018. "Optimal Bayesian design for discriminating between models with intractable likelihoods in epidemiology," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 277-297.
    3. Ryan, Elizabeth G. & Drovandi, Christopher C. & Pettitt, Anthony N., 2015. "Simulation-based fully Bayesian experimental design for mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 26-39.
    4. Cong Han & Kathryn Chaloner, 2004. "Bayesian Experimental Design for Nonlinear Mixed-Effects Models with Application to HIV Dynamics," Biometrics, The International Biometric Society, vol. 60(1), pages 25-33, March.
    5. Elizabeth G. Ryan & Christopher C. Drovandi & James M. McGree & Anthony N. Pettitt, 2016. "A Review of Modern Computational Algorithms for Bayesian Optimal Design," International Statistical Review, International Statistical Institute, vol. 84(1), pages 128-154, April.
    6. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    7. Meihua Wu & Ana Diez†Roux & Trivellore E. Raghunathan & Brisa N. Sánchez, 2018. "FPCA†based method to select optimal sampling schedules that capture between†subject variability in longitudinal studies," Biometrics, The International Biometric Society, vol. 74(1), pages 229-238, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:50:y:2001:i:3:p:345-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.