IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v112y2016icp5-9.html
   My bibliography  Save this article

Bayesian information in an experiment and the Fisher information distance

Author

Listed:
  • Walker, Stephen G.

Abstract

There are two forms of Fisher information; for the parameter of a model and for the information in a density model. These two forms are shown to be fundamentally connected through a measure of gain in information from a Bayesian experiment.

Suggested Citation

  • Walker, Stephen G., 2016. "Bayesian information in an experiment and the Fisher information distance," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 5-9.
  • Handle: RePEc:eee:stapro:v:112:y:2016:i:c:p:5-9
    DOI: 10.1016/j.spl.2016.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216000109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mandal, N.K. & Pal, Manisha & Aggarwal, M.L., 2012. "Pseudo-Bayesian A-optimal designs for estimating the point of maximum in component-amount Darroch–Waller mixture model," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1088-1094.
    2. Ryan, Elizabeth G. & Drovandi, Christopher C. & Pettitt, Anthony N., 2015. "Simulation-based fully Bayesian experimental design for mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 26-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Villa, Cristiano & Walker, Stephen G., 2022. "An objective Bayes factor with improper priors," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. F. Giummolè & V. Mameli & E. Ruli & L. Ventura, 2019. "Objective Bayesian inference with proper scoring rules," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 728-755, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morgan, Joshua C. & Chinen, Anderson Soares & Anderson-Cook, Christine & Tong, Charles & Carroll, John & Saha, Chiranjib & Omell, Benjamin & Bhattacharyya, Debangsu & Matuszewski, Michael & Bhat, K. S, 2020. "Development of a framework for sequential Bayesian design of experiments: Application to a pilot-scale solvent-based CO2 capture process," Applied Energy, Elsevier, vol. 262(C).
    2. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    3. Hong-Yan Jiang & Rong-Xian Yue, 2019. "Pseudo-Bayesian D-optimal designs for longitudinal Poisson mixed models with correlated errors," Computational Statistics, Springer, vol. 34(1), pages 71-87, March.
    4. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2018. "Robust population designs for longitudinal linear regression model with a random intercept," Computational Statistics, Springer, vol. 33(2), pages 903-931, June.
    5. Price, David J. & Bean, Nigel G. & Ross, Joshua V. & Tuke, Jonathan, 2018. "An induced natural selection heuristic for finding optimal Bayesian experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 112-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:112:y:2016:i:c:p:5-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.