IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v92y2015icp134-147.html
   My bibliography  Save this article

Regression under Cox’s model for recall-based time-to-event data in observational studies

Author

Listed:
  • Mirzaei Salehabadi, Sedigheh
  • Sengupta, Debasis

Abstract

In some retrospective observational studies, the subject is asked to recall the age at a particular landmark event. The resulting data may be partially incomplete because of the inability of the subject to recall. This type of incompleteness may be regarded as interval censoring, where the censoring is likely to be informative. The problem of fitting Cox’s relative risk regression model to such data is considered. While a partial likelihood is not available, a method of semi-parametric inference of the regression parameters as well as the baseline distribution is proposed. Monte Carlo simulations show reasonable performance of the regression parameters, compared to Cox estimators of the same parameters computed from the complete version of the data. The proposed method is illustrated through the analysis of data on age at menarche from an anthropometric study of adolescent and young adult females in Kolkata, India.

Suggested Citation

  • Mirzaei Salehabadi, Sedigheh & Sengupta, Debasis, 2015. "Regression under Cox’s model for recall-based time-to-event data in observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 134-147.
  • Handle: RePEc:eee:csdana:v:92:y:2015:i:c:p:134-147
    DOI: 10.1016/j.csda.2015.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001620
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sedigheh Mirzaei Salehabadi & Debasis Sengupta & Rituparna Das, 2015. "Parametric Estimation of Menarcheal Age Distribution Based on Recall Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 290-305, March.
    2. Liu, Hao & Shen, Yu, 2009. "A Semiparametric Regression Cure Model for Interval-Censored Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1168-1178.
    3. Qiqing Yu & George Y. C. Wong & Fanhui Kong, 2006. "Consistency of the Semi‐parametric MLE in Linear Regression Models with Interval‐censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 367-378, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    2. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    3. Han, Bo & Wang, Xiaoguang, 2020. "Semiparametric estimation for the non-mixture cure model in case-cohort and nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    4. Bremhorst, Vincent & Lambert, Philippe, 2016. "Flexible estimation in cure survival models using Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 270-284.
    5. Li, Shuwei & Hu, Tao & Zhao, Xingqiu & Sun, Jianguo, 2019. "A class of semiparametric transformation cure models for interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 153-165.
    6. Hu, Tao & Xiang, Liming, 2013. "Efficient estimation for semiparametric cure models with interval-censored data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 139-151.
    7. Prabhashi W. Withana Gamage & Monica Chaudari & Christopher S. McMahan & Edwin H. Kim & Michael R. Kosorok, 2020. "An extended proportional hazards model for interval-censored data subject to instantaneous failures," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 158-182, January.
    8. Balakrishnan, N. & Pal, Suvra, 2013. "Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 41-67.
    9. Shuying Wang & Chunjie Wang & Jianguo Sun, 2021. "An additive hazards cure model with informative interval censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 244-268, April.
    10. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Mohamed Elamin Abdallah Mohamed Elamin Omer & Mohd Rizam Abu Bakar & Mohd Bakri Adam & Mohd Shafie Mustafa, 2020. "Cure Models with Exponentiated Weibull Exponential Distribution for the Analysis of Melanoma Patients," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    12. Prabhashi W. Withana Gamage & Christopher S. McMahan & Lianming Wang, 2023. "A flexible parametric approach for analyzing arbitrarily censored data that are potentially subject to left truncation under the proportional hazards model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 188-212, January.
    13. Hu, Tao & Xiang, Liming, 2016. "Partially linear transformation cure models for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 257-269.
    14. Xiaoguang Wang & Ziwen Wang, 2021. "EM algorithm for the additive risk mixture cure model with interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 91-130, January.
    15. Sedigheh Mirzaei Salehabadi & Debasis Sengupta, 2016. "Nonparametric estimation of time-to-event distribution based on recall data in observational studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 473-503, October.
    16. Durga H. Kutal & Lianfen Qian, 2018. "A Non-Mixture Cure Model for Right-Censored Data with Fréchet Distribution," Stats, MDPI, vol. 1(1), pages 1-13, November.
    17. Yuan Wu & Christina D. Chambers & Ronghui Xu, 2019. "Semiparametric sieve maximum likelihood estimation under cure model with partly interval censored and left truncated data for application to spontaneous abortion," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 507-528, July.
    18. Gamage, Prabhashi W. Withana & McMahan, Christopher S. & Wang, Lianming & Tu, Wanzhu, 2018. "A Gamma-frailty proportional hazards model for bivariate interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 354-366.
    19. N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
    20. Zhou, Jie & Zhang, Jiajia & McLain, Alexander C. & Cai, Bo, 2016. "A multiple imputation approach for semiparametric cure model with interval censored data," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 105-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:92:y:2015:i:c:p:134-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.