IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v77y2014icp233-251.html
   My bibliography  Save this article

Parsimonious parameterization of correlation matrices using truncated vines and factor analysis

Author

Listed:
  • Brechmann, Eike C.
  • Joe, Harry

Abstract

Both in classical multivariate analysis and in modern copula modeling, correlation matrices are a central concept of dependence modeling using multivariate normal distributions and copulas. Since the number of correlation parameters quadratically increases with the number of variables, parsimonious parameterizations of large correlation matrices in terms of O(d) parameters are important. While factor analysis is commonly used for this purpose, the use of vines is an attractive alternative: vines are graphical models based on a sequence of trees, and are based on the decomposition of a correlation matrix in terms of algebraically independent correlations and partial correlations. By limiting the number of trees, with the so-called truncation, parsimonious parameterizations of correlation matrices may be found. Moreover, truncated vines and factor models may be joined to define a combined model, with individual benefits from each of the two approaches. The different parameterizations and how they are estimated for data are discussed. In particular, spanning tree algorithms for truncated vines and a modified EM algorithm for the combined factor–vine model are proposed and evaluated in a simulation study. Three applications to psychometric and finance data sets illustrate the different parsimonious models.

Suggested Citation

  • Brechmann, Eike C. & Joe, Harry, 2014. "Parsimonious parameterization of correlation matrices using truncated vines and factor analysis," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 233-251.
  • Handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:233-251
    DOI: 10.1016/j.csda.2014.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000796
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lewandowski, Daniel & Kurowicka, Dorota & Joe, Harry, 2009. "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1989-2001, October.
    2. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    3. Michael J. Daniels & Robert E. Kass, 2001. "Shrinkage Estimators for Covariance Matrices," Biometrics, The International Biometric Society, vol. 57(4), pages 1173-1184, December.
    4. Kenneth A. Bollen & J. Scott Long, 1992. "Tests for Structural Equation Models," Sociological Methods & Research, , vol. 21(2), pages 123-131, November.
    5. S. Kullback, 1967. "On Testing Correlation Matrices," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 16(1), pages 80-85, March.
    6. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    7. Johan Braeken & Francis Tuerlinckx & Paul Boeck, 2007. "Copula Functions for Residual Dependency," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 393-411, September.
    8. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavel Krupskii & Harry Joe, 2022. "Approximate likelihood with proxy variables for parameter estimation in high-dimensional factor copula models," Statistical Papers, Springer, vol. 63(2), pages 543-569, April.
    2. Sayed H. Kadhem & Aristidis K. Nikoloulopoulos, 2023. "Factor Tree Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 776-802, September.
    3. David Walsh-Jones & Daniel Jones & Christoph Reisinger, 2014. "Modelling of dependence in high-dimensional financial time series by cluster-derived canonical vines," Papers 1411.4970, arXiv.org.
    4. Pourkhanali, Armin & Kim, Jong-Min & Tafakori, Laleh & Fard, Farzad Alavi, 2016. "Measuring systemic risk using vine-copula," Economic Modelling, Elsevier, vol. 53(C), pages 63-74.
    5. Chang, Bo & Joe, Harry, 2019. "Prediction based on conditional distributions of vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 45-63.
    6. Brechmann, Eike C. & Joe, Harry, 2015. "Truncation of vine copulas using fit indices," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 19-33.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
    2. Aristidis K. Nikoloulopoulos, 2022. "An one‐factor copula mixed model for joint meta‐analysis of multiple diagnostic tests," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1398-1423, July.
    3. Sayed H. Kadhem & Aristidis K. Nikoloulopoulos, 2023. "Factor Tree Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 776-802, September.
    4. Müller, Dominik & Czado, Claudia, 2019. "Dependence modelling in ultra high dimensions with vine copulas and the Graphical Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 211-232.
    5. Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
    6. Eugen Ivanov & Aleksey Min & Franz Ramsauer, 2017. "Copula-Based Factor Models for Multivariate Asset Returns," Econometrics, MDPI, vol. 5(2), pages 1-24, May.
    7. Sahin, Özge & Czado, Claudia, 2022. "Vine copula mixture models and clustering for non-Gaussian data," Econometrics and Statistics, Elsevier, vol. 22(C), pages 136-158.
    8. Krupskii, Pavel & Joe, Harry, 2020. "Flexible copula models with dynamic dependence and application to financial data," Econometrics and Statistics, Elsevier, vol. 16(C), pages 148-167.
    9. Benedikt Schamberger & Lutz F. Gruber & Claudia Czado, 2017. "Bayesian Inference for Latent Factor Copulas and Application to Financial Risk Forecasting," Econometrics, MDPI, vol. 5(2), pages 1-23, May.
    10. Stanislav Anatolyev & Vladimir Pyrlik, 2021. "Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions," CERGE-EI Working Papers wp699, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    11. Bartels, Mariana & Ziegelmann, Flavio A., 2016. "Market risk forecasting for high dimensional portfolios via factor copulas with GAS dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 66-79.
    12. Stöber, Jakob & Czado, Claudia, 2014. "Regime switches in the dependence structure of multidimensional financial data," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 672-686.
    13. Sayed H. Kadhem & Aristidis K. Nikoloulopoulos, 2023. "Bi-factor and Second-Order Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 132-157, March.
    14. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    15. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    16. Roger M. Cooke & Harry Joe & Bo Chang, 2020. "Vine copula regression for observational studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 141-167, June.
    17. D. Gunzler & W. Tang & N. Lu & P. Wu & X. Tu, 2014. "A Class of Distribution-Free Models for Longitudinal Mediation Analysis," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 543-568, October.
    18. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    19. Miao-Yu Tsai & Chuhsing Hsiao, 2008. "Computation of reference Bayesian inference for variance components in longitudinal studies," Computational Statistics, Springer, vol. 23(4), pages 587-604, October.
    20. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:233-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.