Mean field variational Bayesian inference for support vector machine classification
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2013.10.030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, September.
- Luts, Jan & Molenberghs, Geert & Verbeke, Geert & Van Huffel, Sabine & Suykens, Johan A.K., 2012. "A mixed effects least squares support vector machine model for classification of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 611-628.
- Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
- Faes, C. & Ormerod, J. T. & Wand, M. P., 2011. "Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 959-971.
- Bani K. Mallick & Debashis Ghosh & Malay Ghosh, 2005. "Bayesian classification of tumours by using gene expression data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 219-234, April.
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, September.
- Kim, Ji-Hyun, 2009. "Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3735-3745, September.
- M. P. Wand, 2003. "Smoothing and mixed models," Computational Statistics, Springer, vol. 18(2), pages 223-249, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 693-716, September.
- Asim Ansari & Yang Li & Jonathan Z. Zhang, 2018. "Probabilistic Topic Model for Hybrid Recommender Systems: A Stochastic Variational Bayesian Approach," Marketing Science, INFORMS, vol. 37(6), pages 987-1008, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
- Skaug, Hans J. & Fournier, David A., 2006. "Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 699-709, November.
- Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
- Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
- Christian Schellhase & Göran Kauermann, 2012. "Density estimation and comparison with a penalized mixture approach," Computational Statistics, Springer, vol. 27(4), pages 757-777, December.
- Gholamreza Hajargasht & William E. Griffiths, 2018.
"Estimation and testing of stochastic frontier models using variational Bayes,"
Journal of Productivity Analysis, Springer, vol. 50(1), pages 1-24, October.
- Gholamreza Hajargasht & William E. Griffiths, 2016. "Estimation and Testing of Stochastic Frontier Models using Variational Bayes," Department of Economics - Working Papers Series 2024, The University of Melbourne.
- Hübler, Olaf, 2017. "Health and Body Mass Index: No Simple Relationship," IZA Discussion Papers 10620, Institute of Labor Economics (IZA).
- Gerhard Tutz & Jan Gertheiss, 2014. "Rating Scales as Predictors—The Old Question of Scale Level and Some Answers," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 357-376, July.
- Salvati, Nicola & Chandra, Hukum & Giovanna Ranalli, M. & Chambers, Ray, 2010. "Small area estimation using a nonparametric model-based direct estimator," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2159-2171, September.
- Lemmens, Aurélie & Croux, Christophe & Stremersch, Stefan, 2012. "Dynamics in the international market segmentation of new product growth," International Journal of Research in Marketing, Elsevier, vol. 29(1), pages 81-92.
- Chandra, Hukum & Salvati, Nicola & Chambers, Ray, 2018. "Small area estimation under a spatially non-linear model," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 19-38.
- Kauermann, Goran & Khomski, Pavel, 2006. "Additive two-way hazards model with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1944-1956, December.
- Göran Kauermann & Tatyana Krivobokova & Ludwig Fahrmeir, 2009. "Some asymptotic results on generalized penalized spline smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 487-503, April.
- Göran Kauermann & Timo Teuber & Peter Flaschel, 2012. "Exploring US Business Cycles with Bivariate Loops Using Penalized Spline Regression," Computational Economics, Springer;Society for Computational Economics, vol. 39(4), pages 409-427, April.
- Göran Kauermann & Mehboob Ali, 2021. "Semi-parametric regression when some (expensive) covariates are missing by design," Statistical Papers, Springer, vol. 62(4), pages 1675-1696, August.
- Nicole H. Augustin & Stefan Lang & Monica Musio & Klaus Von Wilpert, 2007. "A spatial model for the needle losses of pine‐trees in the forests of Baden‐Württemberg: an application of Bayesian structured additive regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(1), pages 29-50, January.
- Takuma Yoshida, 2016. "Asymptotics and smoothing parameter selection for penalized spline regression with various loss functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 278-303, November.
- María José Lombardía & Stefan Sperlich, 2008. "Semiparametric inference in generalized mixed effects models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 913-930, November.
- Guangyu Zhang & Roderick Little, 2009. "Extensions of the Penalized Spline of Propensity Prediction Method of Imputation," Biometrics, The International Biometric Society, vol. 65(3), pages 911-918, September.
- Göran Kauermann, 2006. "Nonparametric models and their estimation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 137-152, March.
More about this item
Keywords
Approximate Bayesian inference; Variable selection; Missing data; Mixed model; Markov chain Monte Carlo;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:73:y:2014:i:c:p:163-176. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.