IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v71y2014icp79-91.html
   My bibliography  Save this article

A hierarchical modeling approach for clustering probability density functions

Author

Listed:
  • Calò, Daniela G.
  • Montanari, Angela
  • Viroli, Cinzia

Abstract

The problem of clustering probability density functions is emerging in different scientific domains. The methods proposed for clustering probability density functions are mainly focused on univariate settings and are based on heuristic clustering solutions. New aspects of the problem associated with the multivariate setting and a model-based perspective are investigated. The novel approach relies on a hierarchical mixture modeling of the data. The method is introduced in the univariate context and then extended to multivariate densities by means of a factorial model performing dimension reduction. Model fitting is carried out using an EM-algorithm. The proposed method is illustrated through simulated experiments and applied to two real data sets in order to compare its performance with alternative clustering strategies.

Suggested Citation

  • Calò, Daniela G. & Montanari, Angela & Viroli, Cinzia, 2014. "A hierarchical modeling approach for clustering probability density functions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 79-91.
  • Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:79-91
    DOI: 10.1016/j.csda.2013.04.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313001540
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.04.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    2. Vermunt, Jeroen K., 2007. "A hierarchical mixture model for clustering three-way data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5368-5376, July.
    3. Golyandina, Nina & Pepelyshev, Andrey & Steland, Ansgar, 2012. "New approaches to nonparametric density estimation and selection of smoothing parameters," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2206-2218.
    4. Inna Chervoneva & Tingting Zhan & Boris Iglewicz & Walter W. Hauck & David E. Birk, 2012. "Two-stage hierarchical modeling for analysis of subpopulations in conditional distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 445-460, June.
    5. Calò, Daniela G. & Viroli, Cinzia, 2010. "A dimensionally reduced finite mixture model for multilevel data," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2543-2553, November.
    6. Bouveyron, C. & Girard, S. & Schmid, C., 2007. "High-dimensional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 502-519, September.
    7. Delicado, P., 2011. "Dimensionality reduction when data are density functions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 401-420, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
    2. Andrews, Jeffrey L., 2018. "Addressing overfitting and underfitting in Gaussian model-based clustering," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 160-171.
    3. Carlo Cavicchia & Maurizio Vichi & Giorgia Zaccaria, 2022. "Gaussian mixture model with an extended ultrametric covariance structure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 399-427, June.
    4. Alex Sharp & Glen Chalatov & Ryan P. Browne, 2023. "A dual subspace parsimonious mixture of matrix normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 801-822, September.
    5. M. P. B. Gallaugher & C. Biernacki & P. D. McNicholas, 2023. "Parameter-wise co-clustering for high-dimensional data," Computational Statistics, Springer, vol. 38(3), pages 1597-1619, September.
    6. Vaghefi, A. & Farzan, Farbod & Jafari, Mohsen A., 2015. "Modeling industrial loads in non-residential buildings," Applied Energy, Elsevier, vol. 158(C), pages 378-389.
    7. Cristina Tortora & Paul D. McNicholas & Ryan P. Browne, 2016. "A mixture of generalized hyperbolic factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 423-440, December.
    8. Angela Montanari & Daniela Calò, 2013. "Model-based clustering of probability density functions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 301-319, September.
    9. S. Barahona & P. Centella & X. Gual-Arnau & M. V. Ibáñez & A. Simó, 2020. "Supervised classification of geometrical objects by integrating currents and functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 637-660, September.
    10. Laura Anderlucci & Francesca Fortunato & Angela Montanari, 2022. "High-Dimensional Clustering via Random Projections," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 191-216, March.
    11. Charles Bouveyron & Julien Jacques, 2011. "Model-based clustering of time series in group-specific functional subspaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 281-300, December.
    12. Hsien-Tsung Chang & Nilamadhab Mishra & Chung-Chih Lin, 2015. "IoT Big-Data Centred Knowledge Granule Analytic and Cluster Framework for BI Applications: A Case Base Analysis," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-23, November.
    13. Joseph Ndong & Ted Soubdhan, 2022. "Extracting Statistical Properties of Solar and Photovoltaic Power Production for the Scope of Building a Sophisticated Forecasting Framework," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
    14. Regad, L. & Guyon, F. & Maupetit, J. & Tufféry, P. & Camproux, A.C., 2008. "A Hidden Markov Model applied to the protein 3D structure analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3198-3207, February.
    15. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    16. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    17. Paula M. Murray & Ryan P. Browne & Paul D. McNicholas, 2020. "Mixtures of Hidden Truncation Hyperbolic Factor Analyzers," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 366-379, July.
    18. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    19. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    20. Meulders, Michel, 2013. "An R Package for Probabilistic Latent Feature Analysis of Two-Way Two-Mode Frequencies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i14).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:79-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.