IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i7p2206-2218.html
   My bibliography  Save this article

New approaches to nonparametric density estimation and selection of smoothing parameters

Author

Listed:
  • Golyandina, Nina
  • Pepelyshev, Andrey
  • Steland, Ansgar

Abstract

The application of Singular Spectrum Analysis (SSA) to the empirical distribution function sampled at a grid of points spanning the range of the sample leads to a novel and promising method for the computer-intensive nonparametric estimation of both the distribution function and the density function. SSA yields a data-adaptive filter, whose length is a parameter that controls the smoothness of the filtered series. A data-adaptive algorithm for the automatic selection of a general smoothing parameter is introduced, which controls the number of modes of the estimated density. Extensive computer simulations demonstrate that the new automatic bandwidth selector improves on other popular methods for various densities of interest. A general uniform error bound is proved for the proposed SSA estimate of the distribution function, which ensures its uniform consistency. The simulation results indicate that the SSA density estimate with the automatic choice of the filter length outperforms the kernel density estimate in terms of the mean integrated squared error and the Kolmogorov–Smirnov distance for various density shapes. Two applications to problems arising in photovoltaic quality control and economic market research are studied to illustrate the benefits of SSA estimation.

Suggested Citation

  • Golyandina, Nina & Pepelyshev, Andrey & Steland, Ansgar, 2012. "New approaches to nonparametric density estimation and selection of smoothing parameters," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2206-2218.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:7:p:2206-2218
    DOI: 10.1016/j.csda.2011.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311004543
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    2. Chan, Ngai-Hang & Lee, Thomas C.M. & Peng, Liang, 2010. "On nonparametric local inference for density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 509-515, February.
    3. Cheng, Cheng, 1995. "The Bernstein polynomial estimator of a smooth quantile function," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 321-330, September.
    4. Savchuk, Olga Y. & Hart, Jeffrey D. & Sheather, Simon J., 2010. "Indirect Cross-Validation for Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 415-423.
    5. Ansgar Steland & Henryk Zähle, 2009. "Sampling inspection by variables: nonparametric setting," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 101-123, February.
    6. Lambert, Philippe & Eilers, Paul H.C., 2009. "Bayesian density estimation from grouped continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1388-1399, February.
    7. J. Liao & Yujun Wu & Yong Lin, 2010. "Improving Sheather and Jones’ bandwidth selector for difficult densities in kernel density estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(1), pages 105-114.
    8. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calò, Daniela G. & Montanari, Angela & Viroli, Cinzia, 2014. "A hierarchical modeling approach for clustering probability density functions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 79-91.
    2. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    3. Sreevani, & Murthy, C.A., 2016. "On bandwidth selection using minimal spanning tree for kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 67-84.
    4. Golyandina, Nina & Korobeynikov, Anton, 2014. "Basic Singular Spectrum Analysis and forecasting with R," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 934-954.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    2. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Malec, Peter & Schienle, Melanie, 2014. "Nonparametric kernel density estimation near the boundary," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 57-76.
    4. Masayuki Hirukawa & Mari Sakudo, 2015. "Family of the generalised gamma kernels: a generator of asymmetric kernels for nonnegative data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 41-63, March.
    5. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    6. Sreevani, & Murthy, C.A., 2016. "On bandwidth selection using minimal spanning tree for kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 67-84.
    7. Jaeger, Jonathan & Lambert, Philippe, 2012. "Bayesian penalized smoothing approaches in models specified using affine differential equations with unknown error distributions," LIDAM Discussion Papers ISBA 2012017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Philippe Lambert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 284-286, August.
    9. Christophe Corbier, 2016. "Huberian function applied to neurodegenerative disorder gait rhythm," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2065-2084, August.
    10. Christian M. Dahl & Emma M. Iglesias, 2021. "Asymptotic normality of the MLE in the level-effect ARCH model," Statistical Papers, Springer, vol. 62(1), pages 117-135, February.
    11. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
    12. Oke Gerke, 2020. "Nonparametric Limits of Agreement in Method Comparison Studies: A Simulation Study on Extreme Quantile Estimation," IJERPH, MDPI, vol. 17(22), pages 1-14, November.
    13. Funke, Benedikt & Hirukawa, Masayuki, 2019. "Nonparametric estimation and testing on discontinuity of positive supported densities: a kernel truncation approach," Econometrics and Statistics, Elsevier, vol. 9(C), pages 156-170.
    14. Igarashi, Gaku & Kakizawa, Yoshihide, 2014. "Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and Birnbaum–Saunders kernel estimators," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 235-246.
    15. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Papers 2011.00909, arXiv.org, revised Mar 2021.
    16. M. Hiabu & E. Mammen & M. D. Martìnez-Miranda & J. P. Nielsen, 2016. "In-sample forecasting with local linear survival densities," Biometrika, Biometrika Trust, vol. 103(4), pages 843-859.
    17. Gery Geenens, 2014. "Probit Transformation for Kernel Density Estimation on the Unit Interval," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 346-358, March.
    18. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen V.K., 2007. "Nonparametric density estimation for multivariate bounded data," LIDAM Discussion Papers CORE 2007065, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    20. Bouezmarni, T. & Rombouts, J.V.K., 2009. "Semiparametric multivariate density estimation for positive data using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2040-2054, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:7:p:2206-2218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.