IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i2p445-460.html
   My bibliography  Save this article

Two-stage hierarchical modeling for analysis of subpopulations in conditional distributions

Author

Listed:
  • Inna Chervoneva
  • Tingting Zhan
  • Boris Iglewicz
  • Walter W. Hauck
  • David E. Birk

Abstract

In this work, we develop the modeling and estimation approach for the analysis of cross-sectional clustered data with multimodal conditional distributions, where the main interest is in analysis of subpopulations. It is proposed to model such data in a hierarchical model with conditional distributions viewed as finite mixtures of normal components. With a large number of observations in the lowest level clusters, a two-stage estimation approach is used. In the first stage, the normal mixture parameters in each lowest level cluster are estimated using robust methods. Robust alternatives to the maximum-likelihood (ML) estimation are used to provide stable results even for data with conditional distributions such that their components may not quite meet normality assumptions. Then the lowest level cluster-specific means and standard deviations are modeled in a mixed effects model in the second stage. A small simulation study was conducted to compare performance of finite normal mixture population parameter estimates based on robust and ML estimation in stage 1. The proposed modeling approach is illustrated through the analysis of mice tendon fibril diameters data. Analyses results address genotype differences between corresponding components in the mixtures and demonstrate advantages of robust estimation in stage 1.

Suggested Citation

  • Inna Chervoneva & Tingting Zhan & Boris Iglewicz & Walter W. Hauck & David E. Birk, 2012. "Two-stage hierarchical modeling for analysis of subpopulations in conditional distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 445-460, June.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:2:p:445-460
    DOI: 10.1080/02664763.2011.596193
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.596193
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2011.596193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calò, Daniela G. & Montanari, Angela & Viroli, Cinzia, 2014. "A hierarchical modeling approach for clustering probability density functions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 79-91.
    2. Angela Montanari & Daniela Calò, 2013. "Model-based clustering of probability density functions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 301-319, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:2:p:445-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.