IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v66y2013icp8-18.html
   My bibliography  Save this article

OLS with multiple high dimensional category variables

Author

Listed:
  • Gaure, Simen

Abstract

A new algorithm is proposed for OLS estimation of linear models with multiple high-dimensional category variables. It is a generalization of the within transformation to arbitrary number of category variables. The approach, unlike other fast methods for solving such problems, provides a covariance matrix for the remaining coefficients. The article also sets out a method for solving the resulting sparse system, and the new scheme is shown, by some examples, to be comparable in computational efficiency to other fast methods. The method is also useful for transforming away groups of pure control dummies. A parallelized implementation of the proposed method has been made available as an R-package lfe on CRAN.

Suggested Citation

  • Gaure, Simen, 2013. "OLS with multiple high dimensional category variables," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 8-18.
  • Handle: RePEc:eee:csdana:v:66:y:2013:i:c:p:8-18
    DOI: 10.1016/j.csda.2013.03.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313001266
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.03.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John M. Abowd & Robert H. Creecy & Francis Kramarz, 2002. "Computing Person and Firm Effects Using Linked Longitudinal Employer-Employee Data," Longitudinal Employer-Household Dynamics Technical Papers 2002-06, Center for Economic Studies, U.S. Census Bureau.
    2. Gloria J. Bazzoli & Hsueh‐Fen Chen & Mei Zhao & Richard C. Lindrooth, 2008. "Hospital financial condition and the quality of patient care," Health Economics, John Wiley & Sons, Ltd., vol. 17(8), pages 977-995, August.
    3. Margolis, D.N. & Salvanes, K.G., 2001. "Do Firms Really Share Rents with Their Workers?," Papers 11/2001, Norwegian School of Economics and Business Administration-.
    4. Lee, Seokho & Huang, Jianhua Z., 2013. "A coordinate descent MM algorithm for fast computation of sparse logistic PCA," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 26-38.
    5. John M. Abowd & Francis Kramarz & David N. Margolis, 1999. "High Wage Workers and High Wage Firms," Econometrica, Econometric Society, vol. 67(2), pages 251-334, March.
    6. Brian A. Jacob & Lars Lefgren, 2008. "Can Principals Identify Effective Teachers? Evidence on Subjective Performance Evaluation in Education," Journal of Labor Economics, University of Chicago Press, vol. 26(1), pages 101-136.
    7. Daniel Aaronson & Lisa Barrow & William Sander, 2007. "Teachers and Student Achievement in the Chicago Public High Schools," Journal of Labor Economics, University of Chicago Press, vol. 25(1), pages 95-135.
    8. Simen Markussen & Knut Røed, 2015. "Social Insurance Networks," Journal of Human Resources, University of Wisconsin Press, vol. 50(4), pages 1081-1113.
    9. John M. Abowd & Francis Kramarz & Sébastien Roux, 2006. "Wages, Mobility and Firm Performance: Advantages and Insights from Using Matched Worker-Firm Data," Economic Journal, Royal Economic Society, vol. 116(512), pages 245-285, June.
    10. Gibbons, Stephen & Overman, Henry G. & Pelkonen, Panu, 2010. "Wage disparities in Britain: people or place?," LSE Research Online Documents on Economics 30845, London School of Economics and Political Science, LSE Library.
    11. Vidaurre, Diego & Bielza, Concha & Larrañaga, Pedro, 2013. "Sparse regularized local regression," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 122-135.
    12. Thomas Cornelißen & Olaf Hübler, 2011. "Unobserved Individual and Firm Heterogeneity in Wage and Job‐Duration Functions: Evidence from German Linked Employer–Employee Data," German Economic Review, Verein für Socialpolitik, vol. 12(4), pages 469-489, November.
    13. M. J. Andrews & L. Gill & T. Schank & R. Upward, 2008. "High wage workers and low wage firms: negative assortative matching or limited mobility bias?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 673-697, June.
    14. Ueki, Masao & Kawasaki, Yoshinori, 2013. "Multiple choice from competing regression models under multicollinearity based on standardized update," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 31-41.
    15. Anabela Carneiro & Paulo Guimarães & Pedro Portugal, 2012. "Real Wages and the Business Cycle: Accounting for Worker, Firm, and Job Title Heterogeneity," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(2), pages 133-152, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mittag, Nikolas, 2016. "A Simple Method to Estimate Large Fixed Effects Models Applied to Wage Determinants and Matching," IZA Discussion Papers 10447, Institute of Labor Economics (IZA).
    2. Kata Mihaly & Daniel F. McCaffrey & J. R. Lockwood & Tim R. Sass, 2010. "Centering and reference groups for estimates of fixed effects: Modifications to felsdvreg," Stata Journal, StataCorp LP, vol. 10(1), pages 82-103, March.
    3. Nikolas Mittag, 2015. "A Simple Method to Estimate Large Fixed Effects Models Applied to Wage Determinants and Matching," CERGE-EI Working Papers wp532, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    4. Nilsen, Øivind Anti & Raknerud, Arvid & Skjerpen, Terje, 2011. "Using the Helmert-transformation to reduce dimensionality in a mixed model: Application to a wage equation with worker and firm heterogeneity," Discussion Paper Series in Economics 11/2011, Norwegian School of Economics, Department of Economics, revised 04 Oct 2011.
    5. Rasmus Lentz & Jean Marc Robin & Suphanit Piyapromdee, 2018. "On Worker and Firm Heterogeneity in Wages and Employment Mobility: Evidence from Danish Register Data," 2018 Meeting Papers 469, Society for Economic Dynamics.
    6. Erling Barth & James Davis & Richard B. Freeman, 2018. "Augmenting the Human Capital Earnings Equation with Measures of Where People Work," Journal of Labor Economics, University of Chicago Press, vol. 36(S1), pages 71-97.
    7. Cornelißen Thomas & Hübler Olaf, 2011. "Unobserved Individual and Firm Heterogeneity in Wage and Job-Duration Functions: Evidence from German Linked Employer–Employee Data," German Economic Review, De Gruyter, vol. 12(4), pages 469-489, December.
    8. Bombardini, Matilde & Orefice, Gianluca & Tito, Maria D., 2019. "Does exporting improve matching? Evidence from French employer-employee data," Journal of International Economics, Elsevier, vol. 117(C), pages 229-241.
    9. Jesse Rothstein, 2010. "Teacher Quality in Educational Production: Tracking, Decay, and Student Achievement," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(1), pages 175-214.
    10. Davidson, Carl & Heyman, Fredrik & Matusz, Steven & Sjöholm, Fredrik & Zhu, Susan Chun, 2014. "Globalization and imperfect labor market sorting," Journal of International Economics, Elsevier, vol. 94(2), pages 177-194.
    11. C. Kirabo Jackson, 2013. "Match Quality, Worker Productivity, and Worker Mobility: Direct Evidence from Teachers," The Review of Economics and Statistics, MIT Press, vol. 95(4), pages 1096-1116, October.
    12. Gaure, Simen, 2014. "Practical Correlation Bias Correction in Two-way Fixed Effects Linear Regression," Memorandum 21/2014, Oslo University, Department of Economics.
    13. Koen Jochmans & Martin Weidner, 2019. "Fixed‐Effect Regressions on Network Data," Econometrica, Econometric Society, vol. 87(5), pages 1543-1560, September.
    14. Mittag, Nikolas, 2019. "A simple method to estimate large fixed effects models applied to wage determinants," Labour Economics, Elsevier, vol. 61(C).
    15. Pedro Portugal & Hugo Reis & Paulo Guimarães & Ana Rute Cardoso, 2023. "What lies behind returns to schooling: the role of labor market sorting and worker heterogeneity," Working Papers w202322, Banco de Portugal, Economics and Research Department.
    16. Jae Song & David J Price & Fatih Guvenen & Nicholas Bloom & Till von Wachter, 2019. "Firming Up Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(1), pages 1-50.
    17. Richard Duhautois & Fabrice Gilles & Héloïse Petit, 2009. "Worker flows, job flows and establishment wage differentials: Analysing the case of France," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00646440, HAL.
    18. Bassi, Vittorio & Nyshadham, Anant & Tamayo, Jorge & Adhvaryu, Achyuta, 2020. "No Line Left Behind: Assortative Matching Inside the Firm," CEPR Discussion Papers 14554, C.E.P.R. Discussion Papers.
    19. Cho, Chanho & Halford, Joseph T. & Hsu, Scott & Ng, Lilian, 2016. "Do managers matter for corporate innovation?," Journal of Corporate Finance, Elsevier, vol. 36(C), pages 206-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:66:y:2013:i:c:p:8-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.