IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v64y2013icp220-236.html
   My bibliography  Save this article

A predictive deviance criterion for selecting a generative model in semi-supervised classification

Author

Listed:
  • Vandewalle, Vincent
  • Biernacki, Christophe
  • Celeux, Gilles
  • Govaert, Gérard

Abstract

Semi-supervised classification can help to improve generative classifiers by taking into account the information provided by the unlabeled data points, especially when there are far more unlabeled data than labeled data. The aim is to select a generative classification model using both unlabeled and labeled data. A predictive deviance criterion, AICcond, aiming to select a parsimonious and relevant generative classifier in the semi-supervised context is proposed. In contrast to standard information criteria such as AIC and BIC, AICcond is focused on the classification task, since it attempts to measure the predictive power of a generative model by approximating its predictive deviance. However, it avoids the computational cost of cross-validation criteria, which make repeated use of the EM algorithm. AICcond is proved to have consistency properties that ensure its parsimony when compared with the Bayesian Entropy Criterion (BEC), whose focus is similar to that of AICcond. Numerical experiments on both simulated and real data sets show that the behavior of AICcond as regards the selection of variables and models, is encouraging when it is compared to the competing criteria.

Suggested Citation

  • Vandewalle, Vincent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2013. "A predictive deviance criterion for selecting a generative model in semi-supervised classification," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 220-236.
  • Handle: RePEc:eee:csdana:v:64:y:2013:i:c:p:220-236
    DOI: 10.1016/j.csda.2013.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313000546
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christophe Biernacki & Farid Beninel & Vincent Bretagnolle, 2002. "A Generalized Discriminant Rule When Training Population and Test Population Differ on Their Descriptive Parameters," Biometrics, The International Biometric Society, vol. 58(2), pages 387-397, June.
    2. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    3. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, October.
    4. Fraley C. & Raftery A.E., 2002. "Model-Based Clustering, Discriminant Analysis, and Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 611-631, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    2. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    3. Taraneh Abarin & Liqun Wang, 2012. "Instrumental variable approach to covariate measurement error in generalized linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 475-493, June.
    4. Sofie Balcaen & Sophie Manigart & Hubert Ooghe, 2011. "From distress to exit: determinants of the time to exit," Journal of Evolutionary Economics, Springer, vol. 21(3), pages 407-446, August.
    5. Klos, Alexander & Rottke, Simon, 2013. "Saving and Consumption When Children Move Out," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79786, Verein für Socialpolitik / German Economic Association.
    6. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2019. "Empirical Process Results for Exchangeable Arrays," Papers 1906.11293, arXiv.org, revised May 2020.
    7. Santos-Pérez, Rubén., 2015. "Estimación de la demanda de uso de autos particulares en la zona metropolitana del valle de México: un análisis Tobit," Panorama Económico, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(21), pages 85-120, segundo s.
    8. Alexander Frankel & Maximilian Kasy, 2022. "Which Findings Should Be Published?," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 1-38, February.
    9. Kasy, Maximilian, 2011. "A nonparametric test for path dependence in discrete panel data," Economics Letters, Elsevier, vol. 113(2), pages 172-175.
    10. Golob, Thomas F., 1988. "Structural Equation Modeling of Travel Choice Dynamics," University of California Transportation Center, Working Papers qt2kj325qv, University of California Transportation Center.
    11. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    12. Sengupta Anirban & Wiggins Steven N., 2012. "Comparing Price Dispersion on and off the Internet Using Airline Transaction Data," Review of Network Economics, De Gruyter, vol. 11(1), pages 1-38, March.
    13. Cox, Thomas L. & Briggs, Hugh, 1989. "Heteroscedastic Tobit Models: The Household Demand for Fresh Potatoes Revisited," Staff Papers 200482, University of Wisconsin-Madison, Department of Agricultural and Applied Economics.
    14. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    15. Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
    16. Linnemann, Hans & Verbruggen, Harmen, 1991. "GSTP tariff reduction and its effects on south-south trade in manufactures," World Development, Elsevier, vol. 19(5), pages 539-551, May.
    17. Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
    18. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    19. Golob, Thomas F. & Van Wissen, Leo, 1989. "A Joint Household Travel Distance Generation And Car Ownership Model," University of California Transportation Center, Working Papers qt72h4k912, University of California Transportation Center.
    20. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:64:y:2013:i:c:p:220-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.