IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i16p2715-2719.html
   My bibliography  Save this article

Space-time dependence dynamics for birth-death point processes

Author

Listed:
  • Comas, C.
  • Mateu, J.

Abstract

This paper analyses the space-time interdependency of a spatially explicit birth-death process based on the intensity function. Based on intensity functions, these formulations can be, to some extent, analytically solved to obtain the explicit formulae of, for instance, the total point population size contained in the unit torus at equilibrium. The definition of continuous space-time processes based on point intensities opens up new promising lines of research to analyse ecological dynamics: our spatially explicit birth-death process can be easily expanded to mimic other realistic ecological scenarios. Note that although space-time stochastic processes are (generally) intractable, theoretical development of their corresponding intensity function provides useful insights into these complex dynamics. Hence, the analytical analysis of the point intensity provides a complementary method to simulation-based analyses of complex space-time processes.

Suggested Citation

  • Comas, C. & Mateu, J., 2008. "Space-time dependence dynamics for birth-death point processes," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2715-2719, November.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:16:p:2715-2719
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00190-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Renshaw, Eric & Sarkka, Aila, 2001. "Gibbs point processes for studying the development of spatial-temporal stochastic processes," Computational Statistics & Data Analysis, Elsevier, vol. 36(1), pages 85-105, March.
    2. Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Redenbach, Claudia & Särkkä, Aila, 2013. "Parameter estimation for growth interaction processes using spatio-temporal information," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 672-683.
    2. Pommerening, Arne & LeMay, Valerie & Stoyan, Dietrich, 2011. "Model-based analysis of the influence of ecological processes on forest point pattern formation—A case study," Ecological Modelling, Elsevier, vol. 222(3), pages 666-678.
    3. Mohammad Ghorbani & Ottmar Cronie & Jorge Mateu & Jun Yu, 2021. "Functional marked point processes: a natural structure to unify spatio-temporal frameworks and to analyse dependent functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 529-568, September.
    4. Frédéric Lavancier & Ronan Le Guével, 2021. "Spatial birth–death–move processes: Basic properties and estimation of their intensity functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 798-825, September.
    5. Häbel, Henrike & Myllymäki, Mari & Pommerening, Arne, 2019. "New insights on the behaviour of alternative types of individual-based tree models for natural forests," Ecological Modelling, Elsevier, vol. 406(C), pages 23-32.
    6. Renshaw, Eric & Mateu, Jorge & Saura, Fuensanta, 2007. "Disentangling mark/point interaction in marked-point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3123-3144, March.
    7. Cronie, Ottmar & Särkkä, Aila, 2011. "Some edge correction methods for marked spatio-temporal point process models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2209-2220, July.
    8. C. Comas & P. Delicado & J. Mateu, 2011. "A second order approach to analyse spatial point patterns with functional marks," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 503-523, November.
    9. Eckardt, Matthias & González, Jonatan A. & Mateu, Jorge, 2021. "Graphical modelling and partial characteristics for multitype and multivariate-marked spatio-temporal point processes," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    10. Genet, Astrid & Grabarnik, Pavel & Sekretenko, Olga & Pothier, David, 2014. "Incorporating the mechanisms underlying inter-tree competition into a random point process model to improve spatial tree pattern analysis in forestry," Ecological Modelling, Elsevier, vol. 288(C), pages 143-154.
    11. Grabarnik, Pavel & Särkkä, Aila, 2009. "Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions," Ecological Modelling, Elsevier, vol. 220(9), pages 1232-1240.
    12. Chadoeuf, J. & Certain, G. & Bellier, E. & Bar-Hen, A. & Couteron, P. & Monestiez, P. & Bretagnolle, V., 2011. "Estimating inter-group interaction radius for point processes with nested spatial structures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 627-640, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:16:p:2715-2719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.