IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v93y2006i2p439-450.html
   My bibliography  Save this article

Estimating a bivariate density when there are extra data on one or both components

Author

Listed:
  • Peter Hall
  • Natalie Neumeyer

Abstract

The objective of this paper is to estimate a bivariate density nonparametrically from a dataset from the joint distribution and datasets from one or both marginal distributions. We develop a copula-based solution, which has potential benefits even when the marginal datasets are empty. For example, if the copula density is sufficiently smooth in the region where we wish to estimate it, the joint density can be estimated with a high degree of accuracy. Similar improvements in performance are available if the marginals are close to being independent. We use wavelet estimators to approximate the copula density, which in cases of statistical interest can be unbounded along boundaries. Our techniques are also useful for solving recently-considered related problems, for example where the marginal distributions are determined by parametric models. The methodology is also readily extended to more general multivariate settings. Copyright 2006, Oxford University Press.

Suggested Citation

  • Peter Hall & Natalie Neumeyer, 2006. "Estimating a bivariate density when there are extra data on one or both components," Biometrika, Biometrika Trust, vol. 93(2), pages 439-450, June.
  • Handle: RePEc:oup:biomet:v:93:y:2006:i:2:p:439-450
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/93.2.439
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Penev, Spiridon I., 2008. "GeD spline estimation of multivariate Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3570-3582, March.
    2. Qu, Leming & Yin, Wotao, 2012. "Copula density estimation by total variation penalized likelihood with linear equality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 384-398.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:93:y:2006:i:2:p:439-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.