IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i12p4327-4337.html
   My bibliography  Save this article

Nonparametric estimation of location and scale parameters

Author

Listed:
  • Potgieter, C.J.
  • Lombard, F.

Abstract

Two random variables X and Y belong to the same location-scale family if there are constants μ and σ such that Y and μ+σX have the same distribution. In this paper we consider non-parametric estimation of the parameters μ and σ under minimal assumptions regarding the form of the distribution functions of X and Y. We discuss an approach to the estimation problem that is based on asymptotic likelihood considerations. Our results enable us to provide a methodology that can be implemented easily and which yields estimators that are often near optimal when compared to fully parametric methods. We evaluate the performance of the estimators in a series of Monte Carlo simulations.

Suggested Citation

  • Potgieter, C.J. & Lombard, F., 2012. "Nonparametric estimation of location and scale parameters," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4327-4337.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:4327-4337
    DOI: 10.1016/j.csda.2012.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001478
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    2. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhattacharya, Rianka & Subramanian, Sundarraman, 2014. "Two-sample location–scale estimation from semiparametric random censorship models," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 25-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2019. "Empirical Process Results for Exchangeable Arrays," Papers 1906.11293, arXiv.org, revised May 2020.
    2. Alexander Frankel & Maximilian Kasy, 2022. "Which Findings Should Be Published?," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 1-38, February.
    3. Kasy, Maximilian, 2011. "A nonparametric test for path dependence in discrete panel data," Economics Letters, Elsevier, vol. 113(2), pages 172-175.
    4. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    5. Toshihiro Abe & Arthur Pewsey, 2011. "Sine-skewed circular distributions," Statistical Papers, Springer, vol. 52(3), pages 683-707, August.
    6. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    7. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    8. Egozcue, Martín & García, Luis Fuentes & Wong, Wing-Keung & Zitikis, Ricardas, 2011. "Do investors like to diversify? A study of Markowitz preferences," European Journal of Operational Research, Elsevier, vol. 215(1), pages 188-193, November.
    9. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    10. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    11. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    12. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Feb 2024.
    13. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    14. Denis Koshelev & Alexey Ponomarenko & Sergei Seleznev, 2023. "Amortized neural networks for agent-based model forecasting," Papers 2308.05753, arXiv.org.
    15. Debashis Ghosh, 2004. "Semiparametric methods for the binormal model with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1046, Berkeley Electronic Press.
    16. Yao Luo & Peijun Sang, 2022. "Penalized Sieve Estimation of Structural Models," Papers 2204.13488, arXiv.org.
    17. Brian D. Williamson & Peter B. Gilbert & Marco Carone & Noah Simon, 2021. "Nonparametric variable importance assessment using machine learning techniques," Biometrics, The International Biometric Society, vol. 77(1), pages 9-22, March.
    18. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    19. Kristi Kuljus & Bo Ranneby, 2020. "Asymptotic normality of generalized maximum spacing estimators for multivariate observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 968-989, September.
    20. Castillo, Nabor O. & Gómez, Héctor W. & Leiva, Víctor & Sanhueza, Antonio, 2011. "On the Fernández-Steel distribution: Inference and application," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2951-2961, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:4327-4337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.