IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i9p2724-2738.html
   My bibliography  Save this article

Robust estimators and tests for bivariate copulas based on likelihood depth

Author

Listed:
  • Denecke, Liesa
  • Müller, Christine H.

Abstract

Estimators and tests based on likelihood depth for one-parametric copulas are given. For the Gaussian and Gumbel copulas, it is shown that the maximum depth estimators are biased. They can be corrected and the new estimators are robust against contamination. For testing, simplicial likelihood depth is considered. Because of the bias of the maximum depth estimator, simplicial likelihood depth is not a degenerated U-statistic so that easily asymptotic [alpha]-level tests can be derived for arbitrary hypotheses. Tests are in particular investigated for the one-sided alternatives. Simulation studies for the Gaussian and Gumbel copulas show that the power of the first test is rather good, but the latter one has to be improved, which is also done here. The new tests are robust against contamination.

Suggested Citation

  • Denecke, Liesa & Müller, Christine H., 2011. "Robust estimators and tests for bivariate copulas based on likelihood depth," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2724-2738, September.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:9:p:2724-2738
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311001320
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawless, Jerald F. & Yilmaz, Yildiz E., 2011. "Comparison of semiparametric maximum likelihood estimation and two-stage semiparametric estimation in copula models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2446-2455, July.
    2. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    3. Panchenko, Valentyn, 2005. "Goodness-of-fit test for copulas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 176-182.
    4. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2005. "Statistical Tools for Finance and Insurance," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0501, December.
    5. Ivan Mizera & Christine H. Muller, 2004. "Location-Scale Depth," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 949-966, December.
    6. Kim, Gunky & Silvapulle, Mervyn J. & Silvapulle, Paramsothy, 2007. "Comparison of semiparametric and parametric methods for estimating copulas," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2836-2850, March.
    7. Müller, Christine H., 2005. "Depth estimators and tests based on the likelihood principle with application to regression," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 153-181, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph P. Kustosz & Anne Leucht & Christine H. MÜller, 2016. "Tests Based on Simplicial Depth for AR(1) Models With Explosion," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 763-784, November.
    2. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    3. Yihai He & Linbo Wang & Zhenzhen He & Xun Xiao, 2016. "Modelling infant failure rate of electromechanical products with multilayered quality variations from manufacturing process," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6594-6612, November.
    4. Liesa Denecke & Christine Müller, 2014. "Consistency of the likelihood depth estimator for the correlation coefficient," Statistical Papers, Springer, vol. 55(1), pages 3-13, February.
    5. Kotík, Lukáš & Hlubinka, Daniel, 2017. "A weighted localization of halfspace depth and its properties," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 53-69.
    6. Liesa Denecke & Christine Müller, 2014. "New robust tests for the parameters of the Weibull distribution for complete and censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(5), pages 585-607, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    2. Dongdong Li & X. Joan Hu & Mary L. McBride & John J. Spinelli, 2020. "Multiple event times in the presence of informative censoring: modeling and analysis by copulas," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 573-602, July.
    3. Wellmann, Robin & Müller, Christine H., 2010. "Depth notions for orthogonal regression," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2358-2371, November.
    4. Wellmann, Robin & Müller, Christine H., 2010. "Tests for multiple regression based on simplicial depth," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 824-838, April.
    5. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    6. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    7. Rogelio Salinas-Gutiérrez & Arturo Hernández-Aguirre & Enrique Villa-Diharce, 2014. "Copula selection for graphical models in continuous Estimation of Distribution Algorithms," Computational Statistics, Springer, vol. 29(3), pages 685-713, June.
    8. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    9. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    10. Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    11. Rafał Weron, 2009. "Heavy-tails and regime-switching in electricity prices," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 457-473, July.
    12. Miao, Ruiqing & Hennessy, David A. & Feng, Hongli, 2016. "The Effects of Crop Insurance Subsidies and Sodsaver on Land-Use Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(2), May.
    13. Luo, Weiwei & Brooks, Robert D. & Silvapulle, Param, 2011. "Effects of the open policy on the dependence between the Chinese 'A' stock market and other equity markets: An industry sector perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(1), pages 49-74, February.
    14. Jammazi, Rania & Tiwari, Aviral Kr. & Ferrer, Román & Moya, Pablo, 2015. "Time-varying dependence between stock and government bond returns: International evidence with dynamic copulas," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 74-93.
    15. Michał Adam & Piotr Bańbuła & Michał Markun, 2013. "Dependence and contagion between asset prices in Poland and abroad. A copula approach," NBP Working Papers 169, Narodowy Bank Polski.
    16. Marc Gronwald & Janina Ketterer & Stefan Trück, 2011. "The Dependence Structure between Carbon Emission Allowances and Financial Markets - A Copula Analysis," CESifo Working Paper Series 3418, CESifo.
    17. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    18. Pisit Leeahtam & Chukiat Chaiboonsri & Kanchana Chokethaworn & Prasert Chaitip & Songsak Sriboonchitta, 2011. "The Appropriate Model and Dependence Measures of Thailand’s Exchange Rate and Malaysia’s Exchange Rate: Linear, Nonlinear and Copulas Approach," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 1(6), pages 1-14, October.
    19. repec:hum:wpaper:sfb649dp2006-010 is not listed on IDEAS
    20. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    21. Majeed, Fahd & Khanna, Madhu & Miao, Ruiqing & Betes, Elena Blanc & Hudiburg, Tara & DeLucia, Evan, 2022. "Payment for carbon mitigation reduces riskiness of bioenergy crop production," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322277, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:9:p:2724-2738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.