IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v29y2014i3p685-713.html
   My bibliography  Save this article

Copula selection for graphical models in continuous Estimation of Distribution Algorithms

Author

Listed:
  • Rogelio Salinas-Gutiérrez
  • Arturo Hernández-Aguirre
  • Enrique Villa-Diharce

Abstract

This paper presents the use of graphical models and copula functions in Estimation of Distribution Algorithms (EDAs) for solving multivariate optimization problems. It is shown in this work how the incorporation of copula functions and graphical models for modeling the dependencies among variables provides some theoretical advantages over traditional EDAs. By means of copula functions and two well known graphical models, this paper presents a novel approach for defining new EDAs. Either dependence is modeled by a copula function chosen from a predefined set of six functions that aim to cover a wide range of inter-relations. It is also shown how the use of mutual information in the learning of graphical models implies a natural way of employing copula entropies. The experimental results on separable and non-separable functions show that the two new EDAs, which adopt copula functions to model dependencies, perform better than their original version with Gaussian variables. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Rogelio Salinas-Gutiérrez & Arturo Hernández-Aguirre & Enrique Villa-Diharce, 2014. "Copula selection for graphical models in continuous Estimation of Distribution Algorithms," Computational Statistics, Springer, vol. 29(3), pages 685-713, June.
  • Handle: RePEc:spr:compst:v:29:y:2014:i:3:p:685-713
    DOI: 10.1007/s00180-013-0457-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-013-0457-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-013-0457-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    2. Abreu, Gabriel C. G. & Labouriau, Rodrigo & Edwards, David, 2010. "High-Dimensional Graphical Model Search with the gRapHD R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 37(i01).
    3. Gregor Weiß, 2011. "Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study," Computational Statistics, Springer, vol. 26(1), pages 31-54, March.
    4. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    5. Kim, Gunky & Silvapulle, Mervyn J. & Silvapulle, Paramsothy, 2007. "Comparison of semiparametric and parametric methods for estimating copulas," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2836-2850, March.
    6. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    2. Zhang, Kong-Sheng & Lin, Jin-Guan & Xu, Pei-Rong, 2016. "A new class of copulas involving geometric distribution: Estimation and applications," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 1-10.
    3. Vahidin Jeleskovic & Claudio Latini & Zahid I. Younas & Mamdouh A. S. Al-Faryan, 2023. "Optimization of portfolios with cryptocurrencies: Markowitz and GARCH-Copula model approach," Papers 2401.00507, arXiv.org.
    4. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    5. Erlend Bø & Peter Lambert & Thor Thoresen, 2012. "Horizontal inequity under a dual income tax system: principles and measurement," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(5), pages 625-640, October.
    6. Trinh Thi, Huong & Simioni, Michel & Thomas-Agnan, Christine, 2018. "Decomposition of changes in the consumption of macronutrients in Vietnam between 2004 and 2014," Economics & Human Biology, Elsevier, vol. 31(C), pages 259-275.
    7. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    8. Nagler Thomas & Schellhase Christian & Czado Claudia, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    9. Weiß, Gregor N.F. & Scheffer, Marcus, 2015. "Mixture pair-copula-constructions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 175-191.
    10. Dimuthu Fernando & Mohammed Alqawba & Manar Samad & Norou Diawara, 2022. "Review of Copula for Bivariate Distributions of Zero-Inflated Count Time Series Data," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(6), pages 1-28, November.
    11. Ko, Vinnie & Hjort, Nils Lid, 2019. "Model robust inference with two-stage maximum likelihood estimation for copulas," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 362-381.
    12. Steiner, Viktor & Zhu, Junyi, 2021. "A joint top income and wealth distribution," Discussion Papers 2021/3, Free University Berlin, School of Business & Economics.
    13. Pravin Trivedi & David Zimmer, 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data," Econometrics, MDPI, vol. 5(1), pages 1-11, February.
    14. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    15. Zhu, Junyi & Steiner, Viktor, 2020. "A Joint Top Income and Wealth Distribution," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224651, Verein für Socialpolitik / German Economic Association.
    16. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    17. Paulo Horta & Carlos Mendes & Isabel Vieira, 2010. "Contagion effects of the subprime crisis in the European NYSE Euronext markets," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 9(2), pages 115-140, August.
    18. Raffaella Calabrese & Silvia Osmetti, 2014. "Modelling cross-border systemic risk in the European banking sector: a copula approach," Papers 1411.1348, arXiv.org.
    19. Denecke, Liesa & Müller, Christine H., 2011. "Robust estimators and tests for bivariate copulas based on likelihood depth," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2724-2738, September.
    20. Kim, Daeyoung & Kim, Jong-Min & Liao, Shu-Min & Jung, Yoon-Sung, 2013. "Mixture of D-vine copulas for modeling dependence," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 1-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:29:y:2014:i:3:p:685-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.