IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i7p2221-2233.html
   My bibliography  Save this article

Shrinkage-based regularization tests for high-dimensional data with application to gene set analysis

Author

Listed:
  • Shen, Yanfeng
  • Lin, Zhengyan
  • Zhu, Jun

Abstract

Traditional multivariate tests such as Hotelling's test or Wilk's test are designed for classical problems, where the number of observations is much larger than the dimension of the variables. For high-dimensional data, however, this assumption cannot be met any longer. In this article, we consider testing problems in high-dimensional MANOVA where the number of variables exceeds the sample size. To overcome the challenges with high dimensionality, we propose a new approach called a shrinkage-based regularization test, which is suitable for a variety of data structures including the one-sample problem and one-way MANOVA. Our approach uses a ridge regularization to overcome the singularity of the sample covariance matrix and applies a soft-thresholding technique to reduce random noise and improve the testing power. An appealing property of this approach is its ability to select relevant variables that provide evidence against the hypothesis. We compare the performance of our approach with some competing approaches via real microarray data and simulation studies. The results illustrate that the proposed statistics maintains relatively high power in detecting a wide family of alternatives.

Suggested Citation

  • Shen, Yanfeng & Lin, Zhengyan & Zhu, Jun, 2011. "Shrinkage-based regularization tests for high-dimensional data with application to gene set analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2221-2233, July.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:7:p:2221-2233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(11)00002-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Xu, Ping & Brock, Guy N. & Parrish, Rudolph S., 2009. "Modified linear discriminant analysis approaches for classification of high-dimensional microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1674-1687, March.
    3. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    4. Warton, David I., 2008. "Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 340-349, March.
    5. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2010. "Hypothesis Testing in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 75-104, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Modarres, 2024. "Hotelling $$T^2$$ T 2 test in high dimensions with application to Wilks outlier method," Statistical Papers, Springer, vol. 65(8), pages 5203-5218, October.
    2. Zhang, Jin-Ting & Zhu, Tianming, 2022. "A new normal reference test for linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. Shen, Yanfeng & Lin, Zhengyan, 2015. "An adaptive test for the mean vector in large-p-small-n problems," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 25-38.
    4. Yin Xia, 2017. "Testing and support recovery of multiple high-dimensional covariance matrices with false discovery rate control," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 782-801, December.
    5. Soneson, Charlotte & Fontes, Magnus, 2014. "Incorporation of gene exchangeabilities improves the reproducibility of gene set rankings," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 588-598.
    6. Zhang, Qiuyan & Wang, Chen & Zhang, Baoxue & Yang, Hu, 2024. "An RIHT statistic for testing the equality of several high-dimensional mean vectors under homoskedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    7. Zhao, Junguang & Xu, Xingzhong, 2016. "A generalized likelihood ratio test for normal mean when p is greater than n," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 91-104.
    8. Cai, T. Tony & Xia, Yin, 2014. "High-dimensional sparse MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 174-196.
    9. Xiao Min & Chen Ting & Huang Kunpeng & Ming Ruixing, 2020. "Optimal Estimation for Power of Variance with Application to Gene-Set Testing," Journal of Systems Science and Information, De Gruyter, vol. 8(6), pages 549-564, December.
    10. Dong, Kai & Pang, Herbert & Tong, Tiejun & Genton, Marc G., 2016. "Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 127-142.
    11. Jin-Ting Zhang & Bu Zhou & Jia Guo, 2022. "Testing high-dimensional mean vector with applications," Statistical Papers, Springer, vol. 63(4), pages 1105-1137, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    3. Shen, Yanfeng & Lin, Zhengyan, 2015. "An adaptive test for the mean vector in large-p-small-n problems," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 25-38.
    4. Vahe Avagyan & Andrés M. Alonso & Francisco J. Nogales, 2018. "D-trace estimation of a precision matrix using adaptive Lasso penalties," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 425-447, June.
    5. Pedro Duarte Silva, A., 2011. "Two-group classification with high-dimensional correlated data: A factor model approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2975-2990, November.
    6. van Wieringen, Wessel N. & Peeters, Carel F.W., 2016. "Ridge estimation of inverse covariance matrices from high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 284-303.
    7. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    8. Christian Bongiorno, 2020. "Bootstraps Regularize Singular Correlation Matrices," Working Papers hal-02536278, HAL.
    9. van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    10. Zongliang Hu & Zhishui Hu & Kai Dong & Tiejun Tong & Yuedong Wang, 2021. "A shrinkage approach to joint estimation of multiple covariance matrices," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 339-374, April.
    11. Tenenhaus, Arthur & Philippe, Cathy & Frouin, Vincent, 2015. "Kernel Generalized Canonical Correlation Analysis," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 114-131.
    12. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
    13. Sumanjay Dutta & Shashi Jain, 2023. "Precision versus Shrinkage: A Comparative Analysis of Covariance Estimation Methods for Portfolio Allocation," Papers 2305.11298, arXiv.org.
    14. Brett Naul & Bala Rajaratnam & Dario Vincenzi, 2016. "The role of the isotonizing algorithm in Stein’s covariance matrix estimator," Computational Statistics, Springer, vol. 31(4), pages 1453-1476, December.
    15. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    16. Couillet, Romain & McKay, Matthew, 2014. "Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 99-120.
    17. Daniele Girolimetto & George Athanasopoulos & Tommaso Di Fonzo & Rob J Hyndman, 2023. "Cross-temporal Probabilistic Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 6/23, Monash University, Department of Econometrics and Business Statistics.
    18. Huang, Na & Fryzlewicz, Piotr, 2018. "NOVELIST estimator of large correlation and covariance matrices and their inverses," LSE Research Online Documents on Economics 89055, London School of Economics and Political Science, LSE Library.
    19. Michel Tenenhaus & Arthur Tenenhaus & Patrick J. F. Groenen, 2017. "Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 737-777, September.
    20. Leprince, Julien & Madsen, Henrik & Møller, Jan Kloppenborg & Zeiler, Wim, 2023. "Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:7:p:2221-2233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.