IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v111y2012icp66-77.html
   My bibliography  Save this article

Asymptotic normality of posterior distributions for generalized linear mixed models

Author

Listed:
  • Baghishani, Hossein
  • Mohammadzadeh, Mohsen

Abstract

Bayesian inference methods are used extensively in the analysis of Generalized Linear Mixed Models (GLMMs), but it may be difficult to handle the posterior distributions analytically. In this paper, we establish the asymptotic normality of the joint posterior distribution of the parameters and the random effects in a GLMM by using Stein’s Identity. We also show that while incorrect assumptions on the random effects can lead to substantial bias in the estimates of the parameters, the assumed model for the random effects, under some regularity conditions, does not affect the asymptotic normality of the joint posterior distribution. This motivates the use of the approximate normal distributions for sensitivity analysis of the random effects distribution. We additionally illustrate that the approximate normal distribution performs reasonably using both real and simulated data. This creates a primary alternative to Markov Chain Monte Carlo (MCMC) sampling and avoids a wide range of problems for MCMC algorithms in terms of convergence and computational time.

Suggested Citation

  • Baghishani, Hossein & Mohammadzadeh, Mohsen, 2012. "Asymptotic normality of posterior distributions for generalized linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 66-77.
  • Handle: RePEc:eee:jmvana:v:111:y:2012:i:c:p:66-77
    DOI: 10.1016/j.jmva.2012.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12001297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xianzheng Huang, 2009. "Diagnosis of Random-Effect Model Misspecification in Generalized Linear Mixed Models for Binary Response," Biometrics, The International Biometric Society, vol. 65(2), pages 361-368, June.
    2. Saskia Litière & Ariel Alonso & Geert Molenberghs, 2007. "Type I and Type II Error Under Random-Effects Misspecification in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 63(4), pages 1038-1044, December.
    3. Jo Eidsvik & Sara Martino & Håvard Rue, 2009. "Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 1-22, March.
    4. Julie L. Yee, 2002. "Asymptotic approximations to posterior distributions via conditional moment equations," Biometrika, Biometrika Trust, vol. 89(4), pages 755-767, December.
    5. Su, Chun-Lung & Johnson, Wesley O., 2006. "Large-Sample Joint Posterior Approximations When Full Conditionals Are Approximately Normal: Application to Generalized Linear Mixed Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 795-811, June.
    6. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2011. "A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1748-1759, April.
    7. Ole F. Christensen & Rasmus Waagepetersen, 2002. "Bayesian Prediction of Spatial Count Data Using Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 58(2), pages 280-286, June.
    8. Agresti, Alan & Caffo, Brian & Ohman-Strickland, Pamela, 2004. "Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 639-653, October.
    9. Hosseini, Fatemeh & Eidsvik, Jo & Mohammadzadeh, Mohsen, 2011. "Approximate Bayesian inference in spatial GLMM with skew normal latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1791-1806, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murray, James & Philipson, Pete, 2023. "Fast estimation for generalised multivariate joint models using an approximate EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Murray, James & Philipson, Pete, 2022. "A fast approximate EM algorithm for joint models of survival and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Xianzheng, 2011. "Detecting random-effects model misspecification via coarsened data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 703-714, January.
    2. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2011. "A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1748-1759, April.
    3. Lin, Kuo-Chin & Chen, Yi-Ju, 2015. "Detecting misspecification in the random-effects structure of cumulative logit models," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 126-133.
    4. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    5. Higgs, Megan Dailey & Hoeting, Jennifer A., 2010. "A clipped latent variable model for spatially correlated ordered categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1999-2011, August.
    6. Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
    7. Hosseini, Fatemeh & Eidsvik, Jo & Mohammadzadeh, Mohsen, 2011. "Approximate Bayesian inference in spatial GLMM with skew normal latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1791-1806, April.
    8. Freddy Hernández & Viviana Giampaoli, 2018. "The Impact of Misspecified Random Effect Distribution in a Weibull Regression Mixed Model," Stats, MDPI, vol. 1(1), pages 1-29, May.
    9. Pierrette Chagneau & Frédéric Mortier & Nicolas Picard & Jean-Noël Bacro, 2011. "A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non-Gaussian Random Fields," Biometrics, The International Biometric Society, vol. 67(1), pages 97-105, March.
    10. Leonardo Grilli & Carla Rampichini, 2015. "Specification of random effects in multilevel models: a review," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 967-976, May.
    11. De Oliveira, Victor, 2013. "Hierarchical Poisson models for spatial count data," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 393-408.
    12. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    13. Reza Drikvandi & Geert Verbeke & Geert Molenberghs, 2017. "Diagnosing misspecification of the random-effects distribution in mixed models," Biometrics, The International Biometric Society, vol. 73(1), pages 63-71, March.
    14. Chénangnon Frédéric Tovissodé & Aliou Diop & Romain Glèlè Kakaï, 2021. "Inference in skew generalized t-link models for clustered binary outcome via a parameter-expanded EM algorithm," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-31, April.
    15. Alonso, A. & Litière, S. & Molenberghs, G., 2008. "A family of tests to detect misspecifications in the random-effects structure of generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4474-4486, May.
    16. Shun Yu & Xianzheng Huang, 2017. "Random-intercept misspecification in generalized linear mixed models for binary responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 333-359, August.
    17. Marco Minozzo & Luca Bagnato, 2021. "A unified skew‐normal geostatistical factor model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    18. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    19. Iddi Samuel & Nwoko Esther O., 2017. "Effect of covariate misspecifications in the marginalized zero-inflated Poisson model," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 111-120, June.
    20. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:111:y:2012:i:c:p:66-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.