IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i2p1150-1159.html
   My bibliography  Save this article

Approximate repeated-measures shrinkage

Author

Listed:
  • Brentnall, Adam R.
  • Crowder, Martin J.
  • Hand, David J.

Abstract

A general method is formalised for the problem of making predictions for a fixed group of individual units, following a sequence of repeated measures on each. A review of some related work is undertaken and, using some of its terminology, the approach might be described as approximate non-parametric empirical Bayes prediction. It is contended that the method may often produce predictions that are, in practice, comparable or not much worse than more sophisticated methods, but sometimes for a smaller computational cost. Two examples are used to demonstrate the approach, exploring the prediction of baseball averages and spatial-temporal rainfall. The method performs favourably in both examples in comparison with James-Stein, empirical Bayes and other predictions; it also provides a relatively simple and computationally feasible way of determining whether it is worth modelling between-individual variability.

Suggested Citation

  • Brentnall, Adam R. & Crowder, Martin J. & Hand, David J., 2011. "Approximate repeated-measures shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1150-1159, February.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:1150-1159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00357-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:bla:jorssc:v:57:y:2008:i:1:p:43-59 is not listed on IDEAS
    2. Yong Wang, 2007. "On fast computation of the non‐parametric maximum likelihood estimate of a mixing distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 185-198, April.
    3. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    4. An, Lihua & Nkurunziza, Sévérien & Fung, Karen Y. & Krewski, Daniel & Luginaah, Isaac, 2009. "Shrinkage estimation in general linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2537-2549, May.
    5. Gao, Jinxin & Hitchcock, David B., 2010. "James-Stein shrinkage to improve k-means cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2113-2127, September.
    6. Laird, Nan M. & Louis, Thomas A., 1991. "Smoothing the non-parametric estimate of a prior distribution by roughening : A computational study," Computational Statistics & Data Analysis, Elsevier, vol. 12(1), pages 27-37, August.
    7. Brian S. Caffo & Wolfgang Jank & Galin L. Jones, 2005. "Ascent‐based Monte Carlo expectation– maximization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 235-251, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yong, 2010. "Fisher scoring: An interpolation family and its Monte Carlo implementations," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1744-1755, July.
    2. Chung, Yeojin & Lindsay, Bruce G., 2015. "Convergence of the EM algorithm for continuous mixing distributions," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 190-195.
    3. Saeed Hayati & Kenji Fukumizu & Afshin Parvardeh, 2024. "Kernel mean embedding of probability measures and its applications to functional data analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 447-484, June.
    4. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    5. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    6. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    7. Quan, Hao & Yang, Dazhi, 2020. "Probabilistic solar irradiance transposition models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    8. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    9. Dumas, Jonathan & Wehenkel, Antoine & Lanaspeze, Damien & Cornélusse, Bertrand & Sutera, Antonio, 2022. "A deep generative model for probabilistic energy forecasting in power systems: normalizing flows," Applied Energy, Elsevier, vol. 305(C).
    10. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    11. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    12. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    13. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    14. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    15. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
    16. Leonard Smith & Emma Suckling & Erica Thompson & Trevor Maynard & Hailiang Du, 2015. "Towards improving the framework for probabilistic forecast evaluation," Climatic Change, Springer, vol. 132(1), pages 31-45, September.
    17. Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    18. Christopher W. Karvetski & David R. Mandel & Daniel Irwin, 2020. "Improving Probability Judgment in Intelligence Analysis: From Structured Analysis to Statistical Aggregation," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1040-1057, May.
    19. Pan, Wei & Louis, Thomas A., 1999. "Two semi-parametric empirical Bayes estimators," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 185-196, April.
    20. Ching-Wai Chiu & Haroon Mumtaz & Gabor Pinter, 2016. "VAR Models with Non-Gaussian Shocks," Discussion Papers 1609, Centre for Macroeconomics (CFM).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:1150-1159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.