Exploring irrigation behavior at Delta, Utah using hidden Markov models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2014.06.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bulla, Jan & Bulla, Ingo & Nenadic, Oleg, 2010. "hsmm -- An R package for analyzing hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 611-619, March.
- J. P. Hughes & P Guttorp & S. P. Charles, 1999. "A non‐homogeneous hidden Markov model for precipitation occurrence," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(1), pages 15-30.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuan, Shiwei & Li, Xin & Du, Erhu, 2021. "Effects of farmers’ behavioral characteristics on crop choices and responses to water management policies," Agricultural Water Management, Elsevier, vol. 247(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hie Joo Ahn & Bart Hobijn & Ayşegül Şahin, 2023.
"The Dual U.S. Labor Market Uncovered,"
NBER Working Papers
31241, National Bureau of Economic Research, Inc.
- Hie Joo Ahn & Bart Hobijn & Ayşegül Şahin, 2023. "The Dual U.S. Labor Market Uncovered," Working Paper Series WP 2023-18, Federal Reserve Bank of Chicago.
- Hie Joo Ahn & Bart Hobijn, 2023. "The Dual U.S. Labor Market Uncovered," Finance and Economics Discussion Series 2023-031, Board of Governors of the Federal Reserve System (U.S.).
- Pierre Ailliot & Craig Thompson & Peter Thomson, 2009. "Space–time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(3), pages 405-426, July.
- Benjamin Avanzi & Greg Taylor & Bernard Wong & Alan Xian, 2020. "Modelling and understanding count processes through a Markov-modulated non-homogeneous Poisson process framework," Papers 2003.13888, arXiv.org, revised May 2020.
- Ting Wang & Jiancang Zhuang & Kazushige Obara & Hiroshi Tsuruoka, 2017. "Hidden Markov modelling of sparse time series from non-volcanic tremor observations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 691-715, August.
- Guillermo Ferreira & Jorge Mateu & Emilio Porcu, 2018. "Spatio-temporal analysis with short- and long-memory dependence: a state-space approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 221-245, March.
- Morteza Amini & Afarin Bayat & Reza Salehian, 2023. "hhsmm: an R package for hidden hybrid Markov/semi-Markov models," Computational Statistics, Springer, vol. 38(3), pages 1283-1335, September.
- C. E. Pertsinidou & G. Tsaklidis & E. Papadimitriou & N. Limnios, 2017. "Application of hidden semi-Markov models for the seismic hazard assessment of the North and South Aegean Sea, Greece," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(6), pages 1064-1085, April.
- K. Shuvo Bakar, 2020. "Interpolation of daily rainfall data using censored Bayesian spatially varying model," Computational Statistics, Springer, vol. 35(1), pages 135-152, March.
- Lopes, Hedibert Freitas & Gamerman, Dani & Salazar, Esther, 2011. "Generalized spatial dynamic factor models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1319-1330, March.
- O'Connell, Jared & Højsgaard, Søren, 2011. "Hidden Semi Markov Models for Multiple Observation Sequences: The mhsmm Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i04).
- Regnier, Eva, 2008. "Doing something about the weather," Omega, Elsevier, vol. 36(1), pages 22-32, February.
- Valeriy Zakamulin, 2023. "Not all bull and bear markets are alike: insights from a five-state hidden semi-Markov model," Risk Management, Palgrave Macmillan, vol. 25(1), pages 1-25, March.
- Jonsson, Robert, 2011. "Tests of Markov Order and Homogeneity in a Markov Chain," Research Reports 2011:7, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
- M. Ritter & O. Mußhoff & M. Odening, 2014.
"Minimizing Geographical Basis Risk of Weather Derivatives Using A Multi-Site Rainfall Model,"
Computational Economics, Springer;Society for Computational Economics, vol. 44(1), pages 67-86, June.
- Ritter, Matthias & Musshoff, Oliver & Odening, Martin, 2012. "Minimizing geographical basis risk of weather derivatives using a multi-site rainfall model," 123rd Seminar, February 23-24, 2012, Dublin, Ireland 122527, European Association of Agricultural Economists.
- Savannah Wei Shi & Hai Che & Lang Jin, 2021. "Strategic Product Displays Across Different Assortment Levels," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 8(3), pages 84-101, September.
- David J. Allcroft & Chris A. Glasbey, 2003. "A latent Gaussian Markov random‐field model for spatiotemporal rainfall disaggregation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 487-498, October.
- Pohle, Jennifer & Adam, Timo & Beumer, Larissa T., 2022. "Flexible estimation of the state dwell-time distribution in hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
- Spezia, Luigi, 2020. "Bayesian variable selection in non-homogeneous hidden Markov models through an evolutionary Monte Carlo method," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
- Gallego, C. & Pinson, P. & Madsen, H. & Costa, A. & Cuerva, A., 2011. "Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting," Applied Energy, Elsevier, vol. 88(11), pages 4087-4096.
- Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
More about this item
Keywords
Decision; Markov; Viterbi; States; Probability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:143:y:2014:i:c:p:48-58. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.