IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i6p2363-2377.html
   My bibliography  Save this article

Information importance of predictors: Concept, measures, Bayesian inference, and applications

Author

Listed:
  • Retzer, J.J.
  • Soofi, E.S.
  • Soyer, R.

Abstract

The importance of predictors is characterized by the extent to which their use reduces uncertainty about predicting the response variable, namely their information importance. The uncertainty associated with a probability distribution is a concave function of the density such that its global maximum is a uniform distribution reflecting the most difficult prediction situation. Shannon entropy is used to operationalize the concept. For nonstochastic predictors, maximum entropy characterization of probability distributions provides measures of information importance. For stochastic predictors, the expected entropy difference gives measures of information importance, which are invariant under one-to-one transformations of the variables. Applications to various data types lead to familiar statistical quantities for various models, yet with the unified interpretation of uncertainty reduction. Bayesian inference procedures for the importance and relative importance of predictors are developed. Three examples show applications to normal regression, contingency table, and logit analyses.

Suggested Citation

  • Retzer, J.J. & Soofi, E.S. & Soyer, R., 2009. "Information importance of predictors: Concept, measures, Bayesian inference, and applications," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2363-2377, April.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2363-2377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00156-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coin, Daniele, 2008. "A goodness-of-fit test for normality based on polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2185-2198, January.
    2. Stan Lipovetsky & Michael Conklin, 2001. "Analysis of regression in game theory approach," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(4), pages 319-330, October.
    3. Arnold Zellner, 1997. "Bayesian Analysis in Econometrics and Statistics," Books, Edward Elgar Publishing, number 825.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Mohsen Pourahmadi & E. S. Soofi, 2000. "Prediction Variance and Information Worth of Observations in Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(4), pages 413-434, July.
    6. Soofi, E. S. & Retzer, J. J., 2002. "Information indices: unification and applications," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 17-40, March.
    7. Ouali, Abdelaziz & Ramdane Cherif, Amar & Krebs, Marie-Odile, 2006. "Data mining based Bayesian networks for best classification," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1278-1292, November.
    8. Press, S. James & Zellner, Arnold, 1978. "Posterior distribution for the multiple correlation coefficient with fixed regressors," Journal of Econometrics, Elsevier, vol. 8(3), pages 307-321, December.
    9. Louis A. Cox, Jr., 1985. "A New Measure of Attributable Risk for Public Health Applications," Management Science, INFORMS, vol. 31(7), pages 800-813, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iskrev, Nikolay, 2018. "Are asset price data informative about news shocks? A DSGE perspective," Working Paper Series 2161, European Central Bank.
    2. Iskrev, Nikolay, 2019. "On the sources of information about latent variables in DSGE models," European Economic Review, Elsevier, vol. 119(C), pages 318-332.
    3. Soofi, E.S. & Nystrom, P.C. & Yasai-Ardekani, M., 2009. "Executives' perceived environmental uncertainty shortly after 9/11," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3502-3515, July.
    4. Yiyun Shou & Michael Smithson, 2015. "Evaluating Predictors of Dispersion: A Comparison of Dominance Analysis and Bayesian Model Averaging," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 236-256, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soofi, E.S. & Nystrom, P.C. & Yasai-Ardekani, M., 2009. "Executives' perceived environmental uncertainty shortly after 9/11," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3502-3515, July.
    2. Stan Lipovetsky & W. Michael Conklin, 2015. "Predictor relative importance and matching regression parameters," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 1017-1031, May.
    3. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    4. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    5. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    6. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    7. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    8. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    9. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    10. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    11. Salois, Matthew & Moss, Charles, 2010. "An Information Approach to the Dynamics in Farm Income: Implications for Farmland Markets," MPRA Paper 26850, University Library of Munich, Germany.
    12. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    13. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    14. repec:jss:jstsof:21:i08 is not listed on IDEAS
    15. Deng, Yaguo, 2016. "Efficiency evaluation of Spanish hotel chains," DES - Working Papers. Statistics and Econometrics. WS 23897, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    17. Makoto Chikaraishi & Akimasa Fujiwara & Junyi Zhang & Kay Axhausen, 2011. "Identifying variations and co-variations in discrete choice models," Transportation, Springer, vol. 38(6), pages 993-1016, November.
    18. Galatia Cleanthous & Emilio Porcu & Philip White, 2021. "Regularity and approximation of Gaussian random fields evolving temporally over compact two-point homogeneous spaces," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 836-860, December.
    19. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2021. "Persistence and dynamics in the efficiency of toll motorways: The Spanish case," Efficiency Series Papers 2021/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    20. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    21. Scharfenaker, Ellis, 2020. "Implications of quantal response statistical equilibrium," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2363-2377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.