IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v21y2000i4p413-434.html
   My bibliography  Save this article

Prediction Variance and Information Worth of Observations in Time Series

Author

Listed:
  • Mohsen Pourahmadi
  • E. S. Soofi

Abstract

The problem of developing measures of worth of observations in time series has not received much attention in the literature. Any meaningful measure of worth should naturally depend on the position of the observation as well as the objectives of the analysis, namely parameter estimation or prediction of future values. We introduce a measure that quantifies worth of a set of observations for the purpose of prediction of outcomes of stationary processes. The worth is measured as the change in the information content of the entire past due to exclusion or inclusion of a set of observations. The information content is quantified by the mutual information, which is the information theoretic measure of dependency. For Gaussian processes, the measure of worth turns out to be the relative change in the prediction error variance due to exclusion or inclusion of a set of observations. We provide formulae for computing predictive worth of a set of observations for Gaussian autoregressive moving‐average processs. For non‐Gaussian processes, however, a simple function of its entropy provides a lower bound for the variance of prediction error in the same manner that Fisher information provides a lower bound for the variance of an unbiased estimator via the Cramer‐Rao inequality. Statistical estimation of this lower bound requires estimation of the entropy of a stationary time series.

Suggested Citation

  • Mohsen Pourahmadi & E. S. Soofi, 2000. "Prediction Variance and Information Worth of Observations in Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(4), pages 413-434, July.
  • Handle: RePEc:bla:jtsera:v:21:y:2000:i:4:p:413-434
    DOI: 10.1111/1467-9892.00191
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00191
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pascal Bondon, 2005. "Influence of Missing Values on the Prediction of a Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 519-525, July.
    2. Palma, Wilfredo & Bondon, Pascal & Tapia, José, 2008. "Assessing influence in Gaussian long-memory models," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4487-4501, May.
    3. Iskrev, Nikolay, 2018. "Are asset price data informative about news shocks? A DSGE perspective," Working Paper Series 2161, European Central Bank.
    4. Iskrev, Nikolay, 2019. "On the sources of information about latent variables in DSGE models," European Economic Review, Elsevier, vol. 119(C), pages 318-332.
    5. Soofi, E. S. & Retzer, J. J., 2002. "Information indices: unification and applications," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 17-40, March.
    6. Kasahara, Yukio & Pourahmadi, Mohsen & Inoue, Akihiko, 2009. "Duals of random vectors and processes with applications to prediction problems with missing values," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1637-1646, July.
    7. Nader Ebrahimi & S.N.U.A. Kirmani & Ehsan S. Soofi, 2011. "Predictability of operational processes over finite horizon," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(6), pages 531-545, September.
    8. Retzer, J.J. & Soofi, E.S. & Soyer, R., 2009. "Information importance of predictors: Concept, measures, Bayesian inference, and applications," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2363-2377, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:21:y:2000:i:4:p:413-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.