IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i7p1152-1165.html
   My bibliography  Save this article

Bayesian MAP model selection of chain event graphs

Author

Listed:
  • Freeman, G.
  • Smith, J.Q.

Abstract

Chain event graphs are graphical models that while retaining most of the structural advantages of Bayesian networks for model interrogation, propagation and learning, more naturally encode asymmetric state spaces and the order in which events happen than Bayesian networks do. In addition, the class of models that can be represented by chain event graphs for a finite set of discrete variables is a strict superset of the class that can be described by Bayesian networks. In this paper we demonstrate how with complete sampling, conjugate closed form model selection based on product Dirichlet priors is possible, and prove that suitable homogeneity assumptions characterise the product Dirichlet prior on this class of models. We demonstrate our techniques using two educational examples.

Suggested Citation

  • Freeman, G. & Smith, J.Q., 2011. "Bayesian MAP model selection of chain event graphs," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1152-1165, August.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:7:p:1152-1165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X11000467
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heard, Nicholas A. & Holmes, Christopher C. & Stephens, David A., 2006. "A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes: An Application of Bayesian Hierarchical Clustering of Curves," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 18-29, March.
    2. James E. Smith & Samuel Holtzman & James E. Matheson, 1993. "Structuring Conditional Relationships in Influence Diagrams," Operations Research, INFORMS, vol. 41(2), pages 280-297, April.
    3. Yael Berstein & Hugo Maruri-Aguilar & Shmuel Onn & Eva Riccomagno & Henry Wynn, 2010. "Minimal average degree aberration and the state polytope for experimental designs," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(4), pages 673-698, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuele Leonelli & Eva Riccomagno & Jim Q. Smith, 2020. "Coherent combination of probabilistic outputs for group decision making: an algebraic approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 499-528, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelini, Claudia & De Canditiis, Daniela & Pensky, Marianna, 2009. "Bayesian models for two-sample time-course microarray experiments," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1547-1565, March.
    2. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    3. Hugo Maruri-Aguilar & Eduardo Sáenz-de-Cabezón & Henry Wynn, 2013. "Alexander duality in experimental designs," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 667-686, August.
    4. Prakash Shenoy, 1998. "Game Trees For Decision Analysis," Theory and Decision, Springer, vol. 44(2), pages 149-171, April.
    5. Lopez-Diaz, Miguel & Rodriguez-Muniz, Luis J., 2007. "Influence diagrams with super value nodes involving imprecise information," European Journal of Operational Research, Elsevier, vol. 179(1), pages 203-219, May.
    6. Ando, Tomohiro & Bai, Jushan, 2021. "Large-scale generalized linear longitudinal data models with grouped patterns of unobserved heterogeneity," MPRA Paper 111431, University Library of Munich, Germany.
    7. Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.
    8. Baker, Erin & Keisler, Jeffrey M., 2011. "Cellulosic biofuels: Expert views on prospects for advancement," Energy, Elsevier, vol. 36(1), pages 595-605.
    9. Jim Q. Smith & Paul E. Anderson & Silvia Liverani, 2008. "Separation measures and the geometry of Bayes factor selection for classification," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 957-980, November.
    10. Demirer, Riza & Shenoy, Prakash P., 2006. "Sequential valuation networks for asymmetric decision problems," European Journal of Operational Research, Elsevier, vol. 169(1), pages 286-309, February.
    11. Concha Bielza & Prakash P. Shenoy, 1999. "A Comparison of Graphical Techniques for Asymmetric Decision Problems," Management Science, INFORMS, vol. 45(11), pages 1552-1569, November.
    12. Thwaites, Peter A. & Smith, Jim Q., 2018. "A graphical method for simplifying Bayesian games," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 3-11.
    13. repec:jss:jstsof:47:i05 is not listed on IDEAS
    14. Daewon Yang & Taeryon Choi & Eric Lavigne & Yeonseung Chung, 2022. "Non‐parametric Bayesian covariate‐dependent multivariate functional clustering: An application to time‐series data for multiple air pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1521-1542, November.
    15. Cho, Sungbin, 2009. "A linear Bayesian stochastic approximation to update project duration estimates," European Journal of Operational Research, Elsevier, vol. 196(2), pages 585-593, July.
    16. John M. Charnes & Prakash P. Shenoy, 2004. "Multistage Monte Carlo Method for Solving Influence Diagrams Using Local Computation," Management Science, INFORMS, vol. 50(3), pages 405-418, March.
    17. Debarun Bhattacharjya & Ross D. Shachter, 2012. "Formulating Asymmetric Decision Problems as Decision Circuits," Decision Analysis, INFORMS, vol. 9(2), pages 138-145, June.
    18. Aßmann, Christian & Boysen-Hogrefe, Jens, 2009. "A bayesian approach to model-based clustering for panel probit models," Economics Working Papers 2009-03, Christian-Albrechts-University of Kiel, Department of Economics.
    19. Aßmann, Christian & Boysen-Hogrefe, Jens, 2011. "A Bayesian approach to model-based clustering for binary panel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 261-279, January.
    20. Jane L. Harvill & Priya Kohli & Nalini Ravishanker, 2017. "Clustering Nonlinear, Nonstationary Time Series Using BSLEX," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 935-955, September.
    21. Guo, Rui & Shenoy, Prakash P., 1996. "A note on Kirkwood's algebraic method for decision problems," European Journal of Operational Research, Elsevier, vol. 93(3), pages 628-638, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:7:p:1152-1165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.