IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v18y2024i4d10.1007_s11634-023-00567-1.html
   My bibliography  Save this article

Functional clustering of fictional narratives using Vonnegut curves

Author

Listed:
  • Shan Zhong

    (Zhejiang Ocean University)

  • David B. Hitchcock

    (University of South Carolina)

Abstract

Motivated by a public suggestion by the famous novelist Kurt Vonnegut, we clustered functional data that represented sentiment curves for famous fictional stories. We analyzed text data from novels written between 1612 and 1925, and transformed them into curves measuring sentiment as a function of the percentage of elapsed contents of the novel. We employed sentence-level sentiment evaluation and nonparametric curve smoothing. Our clustering methods involved finding the optimal number of clusters, aligning curves using different chronological warping functions to account for phase and amplitude variation, and implementing functional K-means algorithms under the square root velocity framework. Our results revealed insights about patterns in fictional narratives that Vonnegut and others have suggested but not analyzed in a functional way.

Suggested Citation

  • Shan Zhong & David B. Hitchcock, 2024. "Functional clustering of fictional narratives using Vonnegut curves," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(4), pages 1045-1066, December.
  • Handle: RePEc:spr:advdac:v:18:y:2024:i:4:d:10.1007_s11634-023-00567-1
    DOI: 10.1007/s11634-023-00567-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-023-00567-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-023-00567-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    2. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    3. Liu, Xueli & Yang, Mark C.K., 2009. "Simultaneous curve registration and clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1361-1376, February.
    4. Tarpey, Thaddeus, 2007. "Linear Transformations and the k-Means Clustering Algorithm: Applications to Clustering Curves," The American Statistician, American Statistical Association, vol. 61, pages 34-40, February.
    5. Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Vitelli, Valeria, 2010. "k-mean alignment for curve clustering," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1219-1233, May.
    6. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    2. Andrea Martino & Andrea Ghiglietti & Francesca Ieva & Anna Maria Paganoni, 2019. "A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 301-322, June.
    3. Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    4. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    5. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    6. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Wu, Zizhen & Hitchcock, David B., 2016. "A Bayesian method for simultaneous registration and clustering of functional observations," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 121-136.
    8. Galvani, Marta & Torti, Agostino & Menafoglio, Alessandra & Vantini, Simone, 2021. "FunCC: A new bi-clustering algorithm for functional data with misalignment," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    9. Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
    10. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    11. Christian Acal & Ana M. Aguilera, 2023. "Basis expansion approaches for functional analysis of variance with repeated measures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 291-321, June.
    12. Deb, Soudeep & Karmakar, Sayar, 2023. "A novel spatio-temporal clustering algorithm with applications on COVID-19 data from the United States," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    13. Snježana Majstorović & Kristian Sabo & Johannes Jung & Matija Klarić, 2018. "Spectral methods for growth curve clustering," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 715-737, September.
    14. Huaihou Chen & Donglin Zeng, 2014. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1350-1353, December.
    15. Vogt, Michael & Linton, Oliver, 2020. "Multiscale clustering of nonparametric regression curves," Journal of Econometrics, Elsevier, vol. 216(1), pages 305-325.
    16. Pedro C. Álvarez-Esteban & Luis A. García-Escudero, 2022. "Robust clustering of functional directional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 181-199, March.
    17. Carlos Barrera-Causil & Juan Carlos Correa & Andrew Zamecnik & Francisco Torres-Avilés & Fernando Marmolejo-Ramos, 2021. "An FDA-Based Approach for Clustering Elicited Expert Knowledge," Stats, MDPI, vol. 4(1), pages 1-21, March.
    18. Elvira Romano & Jorge Mateu & Ramon Giraldo, 2015. "On the performance of two clustering methods for spatial functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 467-492, October.
    19. Deqing Wang & Zhangqi Zhong & Kaixu Bai & Lingyun He, 2019. "Spatial and Temporal Variabilities of PM 2.5 Concentrations in China Using Functional Data Analysis," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    20. Amovin-Assagba, Martial & Gannaz, Irène & Jacques, Julien, 2022. "Outlier detection in multivariate functional data through a contaminated mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:18:y:2024:i:4:d:10.1007_s11634-023-00567-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.