IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i12p4482-4489.html
   My bibliography  Save this article

A log-extended Weibull regression model

Author

Listed:
  • Silva, Giovana O.
  • Ortega, Edwin M.M.
  • Cordeiro, Gauss M.

Abstract

A bathtub-shaped failure rate function is very useful in survival analysis and reliability studies. The well-known lifetime distributions do not have this property. For the first time, we propose a location-scale regression model based on the logarithm of an extended Weibull distribution which has the ability to deal with bathtub-shaped failure rate functions. We use the method of maximum likelihood to estimate the model parameters and some inferential procedures are presented. We reanalyze a real data set under the new model and the log-modified Weibull regression model. We perform a model check based on martingale-type residuals and generated envelopes and the statistics AIC and BIC to select appropriate models.

Suggested Citation

  • Silva, Giovana O. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2009. "A log-extended Weibull regression model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4482-4489, October.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4482-4489
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00250-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nadarajah, Saralees, 2005. "On the moments of the modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 114-117.
    2. Chen, Zhenmin, 2000. "A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function," Statistics & Probability Letters, Elsevier, vol. 49(2), pages 155-161, August.
    3. Leiva, Victor & Barros, Michelli & Paula, Gilberto A. & Galea, Manuel, 2007. "Influence diagnostics in log-Birnbaum-Saunders regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5694-5707, August.
    4. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Paula, Gilberto A., 2008. "Log-modified Weibull regression models with censored data: Sensitivity and residual analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 4021-4039, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danúbia R. Cunha & Jose Angelo Divino & Helton Saulo, 2022. "On a log-symmetric quantile tobit model applied to female labor supply data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(16), pages 4225-4253, December.
    2. Oseghale O. I. & Akomolafe A. A. & Gayawan E., 2022. "Exponentiated Cubic Transmuted Weibull Distribution: Properties and Application," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 8(1), pages 1-11, 12-2021.
    3. Freddy Hernández & Viviana Giampaoli, 2018. "The Impact of Misspecified Random Effect Distribution in a Weibull Regression Mixed Model," Stats, MDPI, vol. 1(1), pages 1-29, May.
    4. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    2. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    3. Gupta, Ashutosh & Mukherjee, Bhaswati & Upadhyay, S.K., 2008. "Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1434-1443.
    4. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    5. Castillo, Nabor O. & Gómez, Héctor W. & Leiva, Víctor & Sanhueza, Antonio, 2011. "On the Fernández-Steel distribution: Inference and application," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2951-2961, November.
    6. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    7. Barros, Michelli & Paula, Gilberto A. & Leiva, Víctor, 2009. "An R implementation for generalized Birnbaum-Saunders distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1511-1528, February.
    8. José Daniel López-Barrientos & Ekaterina Viktorovna Gromova & Ekaterina Sergeevna Miroshnichenko, 2020. "Resource Exploitation in a Stochastic Horizon under Two Parametric Interpretations," Mathematics, MDPI, vol. 8(7), pages 1-29, July.
    9. V�ctor Leiva & Emilia Athayde & Cecilia Azevedo & Carolina Marchant, 2011. "Modeling wind energy flux by a Birnbaum--Saunders distribution with an unknown shift parameter," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2819-2838, February.
    10. Varun Agiwal, 2023. "Bayesian Estimation of Stress Strength Reliability from Inverse Chen Distribution with Application on Failure Time Data," Annals of Data Science, Springer, vol. 10(2), pages 317-347, April.
    11. Fiaz Ahmad Bhatti & G. G. Hamedani & Seyed Morteza Najibi & Munir Ahmad, 2021. "On the Extended Chen Distribution: Development, Properties, Characterizations and Applications," Annals of Data Science, Springer, vol. 8(1), pages 159-180, March.
    12. Barriga, Gladys D.C. & Louzada-Neto, Franscisco & Cancho, Vicente G., 2011. "The complementary exponential power lifetime model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1250-1259, March.
    13. Feng-Chang Xie & Jin-Guan Lin & Bo-Cheng Wei, 2014. "Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1383-1392, June.
    14. Andréa Rocha & Alexandre Simas, 2011. "Influence diagnostics in a general class of beta regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 95-119, May.
    15. Lucia Santana & Filidor Vilca & V�ctor Leiva, 2011. "Influence analysis in skew-Birnbaum--Saunders regression models and applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1633-1649, July.
    16. Lemonte, Artur J. & Cordeiro, Gauss M., 2009. "Birnbaum-Saunders nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4441-4452, October.
    17. Wenjie Zhang & Wenhao Gui, 2022. "Statistical Inference and Optimal Design of Accelerated Life Testing for the Chen Distribution under Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    18. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    19. Fábio Prataviera & Elizabeth M. Hashimoto & Edwin M. M. Ortega & Taciana V. Savian & Gauss M. Cordeiro, 2023. "Interval-Censored Regression with Non-Proportional Hazards with Applications," Stats, MDPI, vol. 6(2), pages 1-14, May.
    20. Fierro, Raúl & Leiva, Víctor & Ruggeri, Fabrizio & Sanhueza, Antonio, 2013. "On a Birnbaum–Saunders distribution arising from a non-homogeneous Poisson process," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1233-1239.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4482-4489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.