IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i4p1511-1528.html
   My bibliography  Save this article

An R implementation for generalized Birnbaum-Saunders distributions

Author

Listed:
  • Barros, Michelli
  • Paula, Gilberto A.
  • Leiva, Víctor

Abstract

The Birnbaum-Saunders (BS) model is a positively skewed statistical distribution that has received great attention in recent decades. A generalized version of this model was derived based on symmetrical distributions in the real line named the generalized BS (GBS) distribution. The R package named gbs was developed to analyze data from GBS models. This package contains probabilistic and reliability indicators and random number generators from GBS distributions. Parameter estimates for censored and uncensored data can also be obtained by means of likelihood methods from the gbs package. Goodness-of-fit and diagnostic methods were also implemented in this package in order to check the suitability of the GBS models. In this article, the capabilities and features of the gbs package are illustrated by using simulated and real data sets. Shape and reliability analyses for GBS models are presented. A simulation study for evaluating the quality and sensitivity of the estimation method developed in the package is provided and discussed.

Suggested Citation

  • Barros, Michelli & Paula, Gilberto A. & Leiva, Víctor, 2009. "An R implementation for generalized Birnbaum-Saunders distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1511-1528, February.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1511-1528
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00543-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leiva, Victor & Barros, Michelli & Paula, Gilberto A. & Galea, Manuel, 2007. "Influence diagnostics in log-Birnbaum-Saunders regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5694-5707, August.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Leiva, Victor & Riquelme, Marco & Balakrishnan, N. & Sanhueza, Antonio, 2008. "Lifetime analysis based on the generalized Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2079-2097, January.
    4. Lemonte, Artur J. & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2007. "Improved statistical inference for the two-parameter Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4656-4681, May.
    5. Xie, Feng-Chang & Wei, Bo-Cheng, 2007. "Diagnostics analysis for log-Birnbaum-Saunders regression models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4692-4706, May.
    6. Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2007. "Assessment of local influence in elliptical linear models with longitudinal structure," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4354-4368, May.
    7. W.‐Y. Poon & Y. S. Poon, 1999. "Conformal normal curvature and assessment of local influence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 51-61.
    8. Manuel Galea & Victor Leiva-Sanchez & Gilberto Paula, 2004. "Influence Diagnostics in log-Birnbaum-Saunders Regression Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(9), pages 1049-1064.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Mimi & Hu, Qingpei & Xie, Min & Yu, Dan, 2014. "Lower confidence limit for reliability based on grouped data using a quantile-filling algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 96-111.
    2. Zhu, Xiaojun & Balakrishnan, N., 2015. "Birnbaum–Saunders distribution based on Laplace kernel and some properties and inferential issues," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 1-10.
    3. Michelli Barros & Manuel Galea & Manuel González & Víctor Leiva, 2010. "Influence diagnostics in the tobit censored response model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 379-397, August.
    4. Sáez, Antonio José & Prieto, Faustino & Sarabia, José María, 2012. "A two-tail version of the PPS distribution with application to current account balance data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5160-5171.
    5. Marchant, Carolina & Bertin, Karine & Leiva, Víctor & Saulo, Helton, 2013. "Generalized Birnbaum–Saunders kernel density estimators and an analysis of financial data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 1-15.
    6. Martin, Ryan & Han, Zhen, 2016. "A semiparametric scale-mixture regression model and predictive recursion maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 75-85.
    7. Azevedo, Cecilia & Leiva, Víctor & Athayde, Emilia & Balakrishnan, N., 2012. "Shape and change point analyses of the Birnbaum–Saunders-t hazard rate and associated estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3887-3897.
    8. Li, Ai-Ping & Xie, Feng-Chang, 2012. "Diagnostics for a class of survival regression models with heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4204-4214.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ai-Ping & Xie, Feng-Chang, 2012. "Diagnostics for a class of survival regression models with heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4204-4214.
    2. Lucia Santana & Filidor Vilca & V�ctor Leiva, 2011. "Influence analysis in skew-Birnbaum--Saunders regression models and applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1633-1649, July.
    3. Michelli Barros & Manuel Galea & Manuel González & Víctor Leiva, 2010. "Influence diagnostics in the tobit censored response model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 379-397, August.
    4. Artur J. Lemonte & Alexandre G. Patriota, 2011. "Influence diagnostics in Birnbaum--Saunders nonlinear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 871-884, February.
    5. Lemonte, Artur J. & Cordeiro, Gauss M., 2009. "Birnbaum-Saunders nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4441-4452, October.
    6. Lemonte, Artur J. & Ferrari, Silvia L.P., 2011. "Size and power properties of some tests in the Birnbaum-Saunders regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1109-1117, February.
    7. Filidor Vilca & Caio L. N. Azevedo & N. Balakrishnan, 2017. "Bayesian inference for sinh-normal/independent nonlinear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 2052-2074, August.
    8. Lemonte, Artur J. & Ferrari, Silvia L.P. & Cribari-Neto, Francisco, 2010. "Improved likelihood inference in Birnbaum-Saunders regressions," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1307-1316, May.
    9. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    10. Robert G. Aykroyd & Víctor Leiva & Carolina Marchant, 2018. "Multivariate Birnbaum-Saunders Distributions: Modelling and Applications," Risks, MDPI, vol. 6(1), pages 1-25, March.
    11. Vilca, Filidor & Santana, Lucia & Leiva, Víctor & Balakrishnan, N., 2011. "Estimation of extreme percentiles in Birnbaum-Saunders distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1665-1678, April.
    12. Vanegas, Luis Hernando & Rondón, Luz Marina & Cysneiros, Francisco José A., 2012. "Diagnostic procedures in Birnbaum–Saunders nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1662-1680.
    13. Li, Ai-Ping & Chen, Zhao-Xia & Xie, Feng-Chang, 2012. "Diagnostic analysis for heterogeneous log-Birnbaum–Saunders regression models," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1690-1698.
    14. Lemonte, Artur J., 2013. "A new extended Birnbaum–Saunders regression model for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 34-50.
    15. N. Balakrishnan & Xiaojun Zhu, 2015. "Inference for the bivariate Birnbaum–Saunders lifetime regression model and associated inference," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 853-872, October.
    16. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    17. Meintanis, Simos G., 2010. "Inference procedures for the Birnbaum-Saunders distribution and its generalizations," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 367-373, February.
    18. Michelli Barros & Manuel Galea & Víctor Leiva & Manoel Santos-Neto, 2018. "Generalized Tobit models: diagnostics and application in econometrics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 145-167, January.
    19. Joelmir A. Borssoi & Gilberto A. Paula & Manuel Galea, 2020. "Elliptical linear mixed models with a covariate subject to measurement error," Statistical Papers, Springer, vol. 61(1), pages 31-69, February.
    20. Filidor Vilca & Camila Borelli Zeller & Gauss M. Cordeiro, 2015. "The sinh-normal/independent nonlinear regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1659-1676, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1511-1528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.