IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v6y2023i2p41-656d1148973.html
   My bibliography  Save this article

Interval-Censored Regression with Non-Proportional Hazards with Applications

Author

Listed:
  • Fábio Prataviera

    (Department of Exact Sciences, “Luiz de Queiroz” School of Agriculture, University of São Paulo—ESALQ/USP, Piracicaba 13418-900, Brazil
    These authors contributed equally to this work.)

  • Elizabeth M. Hashimoto

    (Academic Department of Mathematics, Federal University of Technology, Londrina 86036-370, Brazil
    These authors contributed equally to this work.)

  • Edwin M. M. Ortega

    (Department of Exact Sciences, “Luiz de Queiroz” School of Agriculture, University of São Paulo—ESALQ/USP, Piracicaba 13418-900, Brazil
    These authors contributed equally to this work.)

  • Taciana V. Savian

    (Department of Exact Sciences, “Luiz de Queiroz” School of Agriculture, University of São Paulo—ESALQ/USP, Piracicaba 13418-900, Brazil
    These authors contributed equally to this work.)

  • Gauss M. Cordeiro

    (Department of Statistics, Federal University of Pernambuco, Recife 50670-901, Brazil
    These authors contributed equally to this work.)

Abstract

Proportional hazards models and, in some situations, accelerated failure time models, are not suitable for analyzing data when the failure ratio between two individuals is not constant. We present a Weibull accelerated failure time model with covariables on the location and scale parameters. By considering the effects of covariables not only on the location parameter, but also on the scale, a regression should be able to adequately describe the difference between treatments. In addition, the deviance residuals adapted for data with the interval censored and the exact time of failure proved to be satisfactory to verify the fit of the model. This information favors the Weibull regression as an alternative to the proportional hazards models without masking the effect of the explanatory variables.

Suggested Citation

  • Fábio Prataviera & Elizabeth M. Hashimoto & Edwin M. M. Ortega & Taciana V. Savian & Gauss M. Cordeiro, 2023. "Interval-Censored Regression with Non-Proportional Hazards with Applications," Stats, MDPI, vol. 6(2), pages 1-14, May.
  • Handle: RePEc:gam:jstats:v:6:y:2023:i:2:p:41-656:d:1148973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/6/2/41/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/6/2/41/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hashimoto, Elizabeth M. & Ortega, Edwin M.M. & Cancho, Vicente G. & Cordeiro, Gauss M., 2010. "The log-exponentiated Weibull regression model for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1017-1035, April.
    2. C. P. Farrington, 2000. "Residuals for Proportional Hazards Models with Interval-Censored Survival Data," Biometrics, The International Biometric Society, vol. 56(2), pages 473-482, June.
    3. Leiva, Victor & Barros, Michelli & Paula, Gilberto A. & Galea, Manuel, 2007. "Influence diagnostics in log-Birnbaum-Saunders regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5694-5707, August.
    4. Ma, Ling & Hu, Tao & Sun, Jianguo, 2016. "Cox regression analysis of dependent interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 79-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    2. Scolas, Sylvie & Legrand, Catherine & Oulhaj, Abderrahim & El Ghouch, Anouar, 2016. "Diagnostic checks in mixture cure models with interval-censoring," LIDAM Discussion Papers ISBA 2016014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    4. Castillo, Nabor O. & Gómez, Héctor W. & Leiva, Víctor & Sanhueza, Antonio, 2011. "On the Fernández-Steel distribution: Inference and application," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2951-2961, November.
    5. Barros, Michelli & Paula, Gilberto A. & Leiva, Víctor, 2009. "An R implementation for generalized Birnbaum-Saunders distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1511-1528, February.
    6. Debashis Ghosh, 2003. "Goodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experiments," Biometrics, The International Biometric Society, vol. 59(3), pages 721-726, September.
    7. V�ctor Leiva & Emilia Athayde & Cecilia Azevedo & Carolina Marchant, 2011. "Modeling wind energy flux by a Birnbaum--Saunders distribution with an unknown shift parameter," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2819-2838, February.
    8. Andréa Rocha & Alexandre Simas, 2011. "Influence diagnostics in a general class of beta regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 95-119, May.
    9. Lucia Santana & Filidor Vilca & V�ctor Leiva, 2011. "Influence analysis in skew-Birnbaum--Saunders regression models and applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1633-1649, July.
    10. Lemonte, Artur J. & Cordeiro, Gauss M., 2009. "Birnbaum-Saunders nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4441-4452, October.
    11. Elizabeth Hashimoto & Gauss Cordeiro & Edwin Ortega, 2013. "The new Neyman type A beta Weibull model with long-term survivors," Computational Statistics, Springer, vol. 28(3), pages 933-954, June.
    12. Fierro, Raúl & Leiva, Víctor & Ruggeri, Fabrizio & Sanhueza, Antonio, 2013. "On a Birnbaum–Saunders distribution arising from a non-homogeneous Poisson process," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1233-1239.
    13. Caro-Lopera, Francisco J. & Leiva, Víctor & Balakrishnan, N., 2012. "Connection between the Hadamard and matrix products with an application to matrix-variate Birnbaum-Saunders distributions," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 126-139, February.
    14. Xiao, Qingchu & Liu, Zaiming & Balakrishnan, N. & Lu, Xuewen, 2010. "Estimation of the Birnbaum-Saunders regression model with current status data," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 326-332, February.
    15. Wang, Xiaoguang & Shi, Xinyong, 2014. "Robust estimation for survival partially linear single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 140-152.
    16. Lemonte, Artur J. & Ferrari, Silvia L.P., 2011. "Size and power properties of some tests in the Birnbaum-Saunders regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1109-1117, February.
    17. Lemonte, Artur J., 2013. "A new extended Birnbaum–Saunders regression model for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 34-50.
    18. Bao Yiqi & Cibele Maria Russo & Vicente G. Cancho & Francisco Louzada, 2016. "Influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(6), pages 1027-1060, May.
    19. Antonio Sanhueza & Víctor Leiva & N. Balakrishnan, 2008. "A new class of inverse Gaussian type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(1), pages 31-49, June.
    20. Michelli Barros & Manuel Galea & Manuel González & Víctor Leiva, 2010. "Influence diagnostics in the tobit censored response model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 379-397, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:6:y:2023:i:2:p:41-656:d:1148973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.