IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i12p4133-4142.html
   My bibliography  Save this article

Maximum likelihood estimation in vector long memory processes via EM algorithm

Author

Listed:
  • Pai, Jeffrey
  • Ravishanker, Nalini

Abstract

We present an approach for exact maximum likelihood estimation of parameters from univariate and multivariate autoregressive fractionally integrated moving average models with Gaussian errors using the Expectation Maximization (EM) algorithm. The method takes advantage of the relation between the VARFIMA(0,d,0) process and the corresponding VARFIMA(p,d,q) process in the computation of the likelihood.

Suggested Citation

  • Pai, Jeffrey & Ravishanker, Nalini, 2009. "Maximum likelihood estimation in vector long memory processes via EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4133-4142, October.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4133-4142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00173-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen-Jen Tsay, 2007. "Maximum Likelihood Estimation of Stationary Multivariate ARFIMA Processes," IEAS Working Paper : academic research 07-A011, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    2. Hosoya, Yuzo, 1996. "The quasi-likelihood approach to statistical inference on multiple time-series with long-range dependence," Journal of Econometrics, Elsevier, vol. 73(1), pages 217-236, July.
    3. Martin, Vance L. & Wilkins, Nigel P., 1999. "Indirect estimation of ARFIMA and VARFIMA models," Journal of Econometrics, Elsevier, vol. 93(1), pages 149-175, November.
    4. Heyde, C. C. & Gay, R., 1993. "Smoothed periodogram asymptotics and estimation for processes and fields with possible long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 45(1), pages 169-182, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    2. Stefanos Kechagias & Vladas Pipiras, 2020. "Modeling bivariate long‐range dependence with general phase," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 268-292, March.
    3. Pai, Jeffrey & Ravishanker, Nalini, 2015. "Fast approximate likelihood evaluation for stable VARFIMA processes," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 160-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rebecca J. Sela & Clifford M. Hurvich, 2009. "Computationally efficient methods for two multivariate fractionally integrated models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 631-651, November.
    2. Pai, Jeffrey & Ravishanker, Nalini, 2015. "Fast approximate likelihood evaluation for stable VARFIMA processes," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 160-168.
    3. Stefanos Kechagias & Vladas Pipiras, 2020. "Modeling bivariate long‐range dependence with general phase," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 268-292, March.
    4. Ravishanker, Nalini & Ray, Bonnie K., 2002. "Bayesian prediction for vector ARFIMA processes," International Journal of Forecasting, Elsevier, vol. 18(2), pages 207-214.
    5. Kristoufek, Ladislav, 2015. "On the interplay between short and long term memory in the power-law cross-correlations setting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 218-222.
    6. Pai, Jeffrey & Ravishanker, Nalini, 2009. "A multivariate preconditioned conjugate gradient approach for maximum likelihood estimation in vector long memory processes," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1282-1289, May.
    7. Yuliya Lovcha & Alejandro Perez-Laborda, 2017. "Structural shocks and dynamic elasticities in a long memory model of the US gasoline retail market," Empirical Economics, Springer, vol. 53(2), pages 405-422, September.
    8. Ayache, Antoine & Lévy Véhel, Jacques, 2004. "On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 119-156, May.
    9. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
    10. Shibin Zhang, 2022. "Automatic estimation of spatial spectra via smoothing splines," Computational Statistics, Springer, vol. 37(2), pages 565-590, April.
    11. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.
    12. Do, Hung Xuan & Nepal, Rabindra & Jamasb, Tooraj, 2020. "Electricity market integration, decarbonisation and security of supply: Dynamic volatility connectedness in the Irish and Great Britain markets," Energy Economics, Elsevier, vol. 92(C).
    13. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2018. "Monetary policy shocks, inflation persistence, and long memory," Journal of Macroeconomics, Elsevier, vol. 55(C), pages 117-127.
    14. Hualde, Javier, 2013. "A simple test for the equality of integration orders," Economics Letters, Elsevier, vol. 119(3), pages 233-237.
    15. Rasmus T. Varneskov & Pierre Perron, 2018. "Combining long memory and level shifts in modelling and forecasting the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 371-393, March.
    16. Tata Subba Rao & Granville Tunnicliffe Wilson & Joao Jesus & Richard E. Chandler, 2017. "Inference with the Whittle Likelihood: A Tractable Approach Using Estimating Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 204-224, March.
    17. Casas, Isabel & Gao, Jiti, 2008. "Econometric estimation in long-range dependent volatility models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 72-83, November.
    18. Anh, V.V. & Leonenko, N.N. & Sakhno, L.M., 2007. "Statistical inference using higher-order information," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 706-742, April.
    19. Martin, Vance L. & Wilkins, Nigel P., 1999. "Indirect estimation of ARFIMA and VARFIMA models," Journal of Econometrics, Elsevier, vol. 93(1), pages 149-175, November.
    20. John W. Galbraith & Victoria Zinde-Walsh, 2001. "Autoregression-Based Estimators for ARFIMA Models," CIRANO Working Papers 2001s-11, CIRANO.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4133-4142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.