Multivariate trees for mixed outcomes
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fan, Juanjuan & Su, Xiao-Gang & Levine, Richard A. & Nunn, Martha E. & LeBlanc, Michael, 2006. "Trees for Correlated Survival Data by Goodness of Split, With Applications to Tooth Prognosis," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 959-967, September.
- Diana L. Miglioretti, 2003. "Latent Transition Regression for Mixed Outcomes," Biometrics, The International Biometric Society, vol. 59(3), pages 710-720, September.
- Siciliano, Roberta & Mola, Francesco, 2000. "Multivariate data analysis and modeling through classification and regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 32(3-4), pages 285-301, January.
- Keon Lee, Seong, 2005. "On generalized multivariate decision tree by using GEE," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1105-1119, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Schmid, Lena & Gerharz, Alexander & Groll, Andreas & Pauly, Markus, 2023. "Tree-based ensembles for multi-output regression: Comparing multivariate approaches with separate univariate ones," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Piccarreta, Raffaella, 2010. "Binary trees for dissimilarity data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1516-1524, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
- Schmid, Lena & Gerharz, Alexander & Groll, Andreas & Pauly, Markus, 2023. "Tree-based ensembles for multi-output regression: Comparing multivariate approaches with separate univariate ones," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Mariangela Sciandra & Antonella Plaia & Vincenza Capursi, 2017. "Classification trees for multivariate ordinal response: an application to Student Evaluation Teaching," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 641-655, March.
- Claudio Conversano & Francesco Mola & Roberta Siciliano, 2001. "Partitioning Algorithms and Combined Model Integration for Data Mining," Computational Statistics, Springer, vol. 16(3), pages 323-339, September.
- Peter Calhoun & Melodie J. Hallett & Xiaogang Su & Guy Cafri & Richard A. Levine & Juanjuan Fan, 2020. "Random forest with acceptance–rejection trees," Computational Statistics, Springer, vol. 35(3), pages 983-999, September.
- Piccarreta, Raffaella, 2010. "Binary trees for dissimilarity data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1516-1524, June.
- George Petrakos & Claudio Conversano & Gregory Farmakis & Francesco Mola & Roberta Siciliano & Photis Stavropoulos, 2004. "New ways of specifying data edits," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(2), pages 249-274, May.
- Noh, Hyun Gon & Song, Moon Sup & Park, Sung Hyun, 2004. "An unbiased method for constructing multilabel classification trees," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 149-164, August.
- Hajjem, Ahlem & Bellavance, François & Larocque, Denis, 2011. "Mixed effects regression trees for clustered data," Statistics & Probability Letters, Elsevier, vol. 81(4), pages 451-459, April.
- Claudio Conversano & Roberta Siciliano, 2009. "Incremental Tree-Based Missing Data Imputation with Lexicographic Ordering," Journal of Classification, Springer;The Classification Society, vol. 26(3), pages 361-379, December.
- Amodio, S. & D’Ambrosio, A. & Siciliano, R., 2016. "Accurate algorithms for identifying the median ranking when dealing with weak and partial rankings under the Kemeny axiomatic approach," European Journal of Operational Research, Elsevier, vol. 249(2), pages 667-676.
- Hsiao, Wei-Cheng & Shih, Yu-Shan, 2007. "Splitting variable selection for multivariate regression trees," Statistics & Probability Letters, Elsevier, vol. 77(3), pages 265-271, February.
- Pier Perri & Peter Heijden, 2012. "A Property of the CHAID Partitioning Method for Dichotomous Randomized Response Data and Categorical Predictors," Journal of Classification, Springer;The Classification Society, vol. 29(1), pages 76-90, April.
- Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
- Roberta Siciliano & Antonio D’Ambrosio & Massimo Aria & Sonia Amodio, 2017. "Analysis of Web Visit Histories, Part II: Predicting Navigation by Nested STUMP Regression Trees," Journal of Classification, Springer;The Classification Society, vol. 34(3), pages 473-493, October.
- Lee, Tzu-Haw & Shih, Yu-Shan, 2006. "Unbiased variable selection for classification trees with multivariate responses," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 659-667, November.
- Silvia Cagnone & Cinzia Viroli, 2018. "Multivariate latent variable transition models of longitudinal mixed data: an analysis on alcohol use disorder," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1399-1418, November.
- Antonio D’Ambrosio & Willem J. Heiser, 2016. "A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 774-794, September.
- Cappelli, Carmela & Mola, Francesco & Siciliano, Roberta, 2002. "A statistical approach to growing a reliable honest tree," Computational Statistics & Data Analysis, Elsevier, vol. 38(3), pages 285-299, January.
- Peter Calhoun & Richard A. Levine & Juanjuan Fan, 2021. "Repeated measures random forests (RMRF): Identifying factors associated with nocturnal hypoglycemia," Biometrics, The International Biometric Society, vol. 77(1), pages 343-351, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:11:p:3795-3804. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.