IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2008i2p477-485.html
   My bibliography  Save this article

Selection between Weibull and lognormal distributions: A comparative simulation study

Author

Listed:
  • Kim, Jin Seon
  • Yum, Bong-Jin

Abstract

How to select the correct distribution for a given set of data is an important issue, especially when the tail probabilities are of interest as in lifetime data analysis. The Weibull and lognormal distributions are assumed most often in analyzing lifetime data, and in many cases, they are competing with each other. In addition, lifetime data are usually censored due to the constraint on the amount of testing time. A literature review reveals that little attention has been paid to the selection problems for the case of censored samples. In this article, relative performances of the two selection procedures, namely, the maximized likelihood and scale invariant procedures are compared for selecting between the Weibull and lognormal distributions for the cases of not only complete but also censored samples. Monte Carlo simulation experiments are conducted for various combinations of the censoring rate and sample size, and the performance of each procedure is evaluated in terms of the probability of correct selection (PCS) and average error rate. Then, previously unknown behaviors and relative performances of the two procedures are summarized. Computational results suggest that the maximized likelihood procedure can be generally recommended for censored as well as complete sample cases.

Suggested Citation

  • Kim, Jin Seon & Yum, Bong-Jin, 2008. "Selection between Weibull and lognormal distributions: A comparative simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 477-485, December.
  • Handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:477-485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00425-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Colin, 2006. "Tests of fit for the three-parameter lognormal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1418-1440, March.
    2. Gupta, Rameshwar D. & Kundu, Debasis, 2003. "Discriminating between Weibull and generalized exponential distributions," Computational Statistics & Data Analysis, Elsevier, vol. 43(2), pages 179-196, June.
    3. Vera, J. Fernando & Di­az-Garci­a, Jose A., 2008. "A global simulated annealing heuristic for the three-parameter lognormal maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5055-5065, August.
    4. Sultan, K.S. & Ismail, M.A. & Al-Moisheer, A.S., 2007. "Mixture of two inverse Weibull distributions: Properties and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5377-5387, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soumya Roy & Chiranjit Mukhopadhyay, 2015. "Maximum likelihood analysis of multi-stress accelerated life test data of series systems with competing log-normal causes of failure," Journal of Risk and Reliability, , vol. 229(2), pages 119-130, April.
    2. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    3. Neves, Cláudia & Pereira, António, 2010. "Detecting finiteness in the right endpoint of light-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 437-444, March.
    4. Santosh B. Rane & Yahya A. M. Narvel, 2016. "Reliability assessment and improvement of air circuit breaker (ACB) mechanism by identifying and eliminating the root causes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 305-321, December.
    5. Juliana Castaneda & Xabier A. Martin & Majsa Ammouriova & Javier Panadero & Angel A. Juan, 2022. "A Fuzzy Simheuristic for the Permutation Flow Shop Problem under Stochastic and Fuzzy Uncertainty," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    6. Ajinkya Shirurkar & Yogesh Patil & D. Davidson Jebaseelan, 2019. "Reliability improvement of fork biasing spring in MCCB mechanism," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 491-498, August.
    7. Santosh B. Rane & Yahya A.M. Narvel & Niloy Khatua, 2017. "Development of mechanism for mounting secondary isolating contacts (SICs) in air circuit breakers (ACBs) with high operational reliability," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1816-1831, November.
    8. Xiaomin Wan & Liubao Peng & Yuanjian Li, 2015. "A Review and Comparison of Methods for Recreating Individual Patient Data from Published Kaplan-Meier Survival Curves for Economic Evaluations: A Simulation Study," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    9. CHEN, Piao & YE, Zhi-Sheng, 2018. "A systematic look at the gamma process capability indices," European Journal of Operational Research, Elsevier, vol. 265(2), pages 589-597.
    10. Shovan Chowdhury, 2019. "Selection between Exponential and Lindley distributions," Working papers 316, Indian Institute of Management Kozhikode.
    11. Locatelli, Isabella & Marazzi, Alfio & Yohai, Victor J., 2011. "Robust accelerated failure time regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 874-887, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santosh B. Rane & Yahya A.M. Narvel & Niloy Khatua, 2017. "Development of mechanism for mounting secondary isolating contacts (SICs) in air circuit breakers (ACBs) with high operational reliability," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1816-1831, November.
    2. Santosh B. Rane & Yahya A. M. Narvel, 2016. "Reliability assessment and improvement of air circuit breaker (ACB) mechanism by identifying and eliminating the root causes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 305-321, December.
    3. Ajinkya Shirurkar & Yogesh Patil & D. Davidson Jebaseelan, 2019. "Reliability improvement of fork biasing spring in MCCB mechanism," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 491-498, August.
    4. K. Sultan & A. Al-Moisheer, 2013. "Updating a nonlinear discriminant function estimated from a mixture of two inverse Weibull distributions," Statistical Papers, Springer, vol. 54(1), pages 163-175, February.
    5. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    6. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2015. "Estimation for mixed exponential distributions under type-II progressively hybrid censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 85-96.
    7. Chang, Yiming & Tao, YinYing & Shan, Wei & Yu, Xiangyuan, 2023. "Forecasting COVID-19 new cases through the Mixed Generalized Inverse Weibull Distribution and time series model," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    8. Shovan Chowdhury, 2019. "Selection between Exponential and Lindley distributions," Working papers 316, Indian Institute of Management Kozhikode.
    9. Vera, J. Fernando & Macas, Rodrigo & Heiser, Willem J., 2009. "A dual latent class unfolding model for two-way two-mode preference rating data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3231-3244, June.
    10. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    11. Gutiérrez-Sánchez, R. & Nafidi, A. & Pascual, A. & Ramos-Ábalos, E., 2011. "Three parameter gamma-type growth curve, using a stochastic gamma diffusion model: Computational statistical aspects and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 234-243.
    12. Saieed Ateya, 2014. "Maximum likelihood estimation under a finite mixture of generalized exponential distributions based on censored data," Statistical Papers, Springer, vol. 55(2), pages 311-325, May.
    13. Debasis Kundu & Anubhav Manglick, 2004. "Discriminating between the Weibull and log‐normal distributions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 893-905, September.
    14. Román-Román, P. & Torres-Ruiz, F., 2015. "A stochastic model related to the Richards-type growth curve. Estimation by means of simulated annealing and variable neighborhood search," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 579-598.
    15. Nandi, Swagata & Dewan, Isha, 2010. "An EM algorithm for estimating the parameters of bivariate Weibull distribution under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1559-1569, June.
    16. Ruizheng Niu & Weizhong Tian & Yunchu Zhang, 2023. "Discriminating among Generalized Exponential, Weighted Exponential and Weibull Distributions," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    17. Yu-Jau Lin & Y. L. Lio, 2012. "Bayesian inference under progressive type-I interval censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1811-1824, April.
    18. Heba S. Mohammed & Saieed F. Ateya & Essam K. AL-Hussaini, 2017. "Estimation based on progressive first-failure censoring from exponentiated exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1479-1494, June.
    19. Sarhan, Ammar M. & Balakrishnan, N., 2007. "A new class of bivariate distributions and its mixture," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1508-1527, August.
    20. Torabi, Hamzeh & Bagheri, F.L. & Mahmoudi, E., 2018. "Estimation of parameters for the Marshall–Olkin generalized exponential distribution based on complete data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 177-185.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:477-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.