IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2008i1p38-60.html
   My bibliography  Save this article

Bayesian mixture of autoregressive models

Author

Listed:
  • Lau, John W.
  • So, Mike K.P.

Abstract

An infinite mixture of autoregressive models is developed. The unknown parameters in the mixture autoregressive model follow a mixture distribution, which is governed by a Dirichlet process prior. One main feature of our approach is the generalization of a finite mixture model by having the number of components unspecified. A Bayesian sampling scheme based on a weighted Chinese restaurant process is proposed to generate partitions of observations. Using the partitions, Bayesian prediction, while accounting for possible model uncertainty, determining the most probable number of mixture components, clustering of time series and outlier detection in time series, can be done. Numerical results from simulated and real data are presented to illustrate the methodology.

Suggested Citation

  • Lau, John W. & So, Mike K.P., 2008. "Bayesian mixture of autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 38-60, September.
  • Handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:38-60
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00298-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert E. McCulloch & Ruey S. Tsay, 1994. "Bayesian Analysis Of Autoregressive Time Series Via The Gibbs Sampler," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 235-250, March.
    2. Peter J. Green & Sylvia Richardson, 2001. "Modelling Heterogeneity With and Without the Dirichlet Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(2), pages 355-375, June.
    3. C. S. Wong & W. K. Li, 2000. "On a mixture autoregressive model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 95-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    2. Davide Ravagli & Georgi N. Boshnakov, 2022. "Bayesian analysis of mixture autoregressive models covering the complete parameter space," Computational Statistics, Springer, vol. 37(3), pages 1399-1433, July.
    3. Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Chen, Kunzhi & Shen, Weining & Zhu, Weixuan, 2023. "Covariate dependent Beta-GOS process," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    5. Ori Rosen & Sally Wood & David S. Stoffer, 2012. "AdaptSPEC: Adaptive Spectral Estimation for Nonstationary Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1575-1589, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flachaire, Emmanuel & Nunez, Olivier, 2007. "Estimation of the income distribution and detection of subpopulations: An explanatory model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3368-3380, April.
    2. Myroslav Pidkuyko, 2014. "Dynamics of Consumption and Dividends over the Business Cycle," CERGE-EI Working Papers wp522, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    3. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    4. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    5. Barnett, Glen & Kohn, Robert & Sheather, Simon, 1996. "Bayesian estimation of an autoregressive model using Markov chain Monte Carlo," Journal of Econometrics, Elsevier, vol. 74(2), pages 237-254, October.
    6. Francesco Battaglia & Lia Orfei, 2005. "Outlier Detection And Estimation In NonLinear Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(1), pages 107-121, January.
    7. Héctor Zárate & Norberto Rodríguez & Margarita Marín, 2013. "El tamano de las empresas y la transmisión de la política monetaria en Colombia: una aplicación con la encuesta mensual de expectativas económicas," Revista de Economía del Rosario, Universidad del Rosario, June.
    8. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.
    9. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    10. Kalliovirta, Leena & Meitz, Mika & Saikkonen, Pentti, 2016. "Gaussian mixture vector autoregression," Journal of Econometrics, Elsevier, vol. 192(2), pages 485-498.
    11. Paolo Guarda & Abdelaziz Rouabah & John Theal, 2011. "An MVAR Framework to Capture Extreme Events in Macroprudential Stress Tests," BCL working papers 63, Central Bank of Luxembourg.
    12. Jing Wang, 2010. "Gibbs sampling in DP-based nonlinear mixed effects models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(2), pages 325-340.
    13. Arifatus Solikhah & Heri Kuswanto & Nur Iriawan & Kartika Fithriasari, 2021. "Fisher’s z Distribution-Based Mixture Autoregressive Model," Econometrics, MDPI, vol. 9(3), pages 1-35, June.
    14. L. Bauwens & J.V.K. Rombouts, 2007. "Bayesian inference for the mixed conditional heteroskedasticity model," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 408-425, July.
    15. Nathan Cunningham & Jim E. Griffin & David L. Wild, 2020. "ParticleMDI: particle Monte Carlo methods for the cluster analysis of multiple datasets with applications to cancer subtype identification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 463-484, June.
    16. Ludkin, Matthew, 2020. "Inference for a generalised stochastic block model with unknown number of blocks and non-conjugate edge models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    17. J. Griffin, 2011. "Bayesian clustering of distributions in stochastic frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(3), pages 275-283, December.
    18. Villani, Mattias & Kohn, Robert & Nott, David J., 2012. "Generalized smooth finite mixtures," Journal of Econometrics, Elsevier, vol. 171(2), pages 121-133.
    19. Oh, Man-Suk & Shin, Dong Wan & Kim, Han Joon, 2002. "Bayesian analysis of regression models with spatially correlated errors and missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 387-400, June.
    20. Pfann, Gerard A. & Schotman, Peter C. & Tschernig, Rolf, 1996. "Nonlinear interest rate dynamics and implications for the term structure," Journal of Econometrics, Elsevier, vol. 74(1), pages 149-176, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:38-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.