IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v26y2005i1p107-121.html
   My bibliography  Save this article

Outlier Detection And Estimation In NonLinear Time Series

Author

Listed:
  • Francesco Battaglia
  • Lia Orfei

Abstract

. The problem of identifying the time location and estimating the amplitude of outliers in nonlinear time series is addressed. A model‐based method is proposed for detecting the presence of additive or innovational outliers when the series is generated by a general nonlinear model. We use this method for identifying and estimating outliers in bilinear, self‐exciting threshold autoregressive and exponential autoregressive models. A simulation study is performed to test the proposed procedures and comparing them with the methods based on linear models and linear interpolators. Finally, our results are applied for detecting outliers in the Canadian lynx trappings and in the sunspot numbers data.

Suggested Citation

  • Francesco Battaglia & Lia Orfei, 2005. "Outlier Detection And Estimation In NonLinear Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(1), pages 107-121, January.
  • Handle: RePEc:bla:jtsera:v:26:y:2005:i:1:p:107-121
    DOI: 10.1111/j.1467-9892.2005.00392.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2005.00392.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2005.00392.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Cathy W. S., 1997. "Detection of additive outliers in bilinear time series," Computational Statistics & Data Analysis, Elsevier, vol. 24(3), pages 283-294, May.
    2. Barnett, Glen & Kohn, Robert & Sheather, Simon, 1996. "Bayesian estimation of an autoregressive model using Markov chain Monte Carlo," Journal of Econometrics, Elsevier, vol. 74(2), pages 237-254, October.
    3. Robert E. McCulloch & Ruey S. Tsay, 1994. "Bayesian Analysis Of Autoregressive Time Series Via The Gibbs Sampler," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 235-250, March.
    4. Wai-Sum Chan, 1995. "Understanding the effect of time series outliers on sample autocorrelations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(1), pages 179-186, June.
    5. van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for ARCH in the Presence of Additive Outliers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 539-562, Sept.-Oct.
    6. M. M. Gabr & T. Subba Rao, 1981. "The Estimation And Prediction Of Subset Bilinear Time Series Models With Applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 2(3), pages 155-171, May.
    7. Ledolter, Johannes, 1989. "The effect of additive outliers on the forecasts from ARIMA models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 231-240.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping Chen & Jing Yang & Linyuan Li, 2015. "Synthetic detection of change point and outliers in bilinear time series models," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(2), pages 284-293, January.
    2. Sadahiro, Yukio, 2021. "A method for analyzing the daily variation in the spatial pattern of market area," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
    3. Olivier Darné & Amélie Charles, 2011. "Large shocks in U.S. macroeconomic time series: 1860-1988," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 5(1), pages 79-100, January.
    4. Luigi Grossi & Fany Nan, 2017. "Forecasting electricity prices through robust nonlinear models," Working Papers 06/2017, University of Verona, Department of Economics.
    5. Battaglia, Francesco, 2005. "Outliers in functional autoregressive time series," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 323-332, May.
    6. Giordani, Paolo & Kohn, Robert & van Dijk, Dick, 2007. "A unified approach to nonlinearity, structural change, and outliers," Journal of Econometrics, Elsevier, vol. 137(1), pages 112-133, March.
    7. Kocenda, Evzen & Valachy, Juraj, 2006. "Exchange rate volatility and regime change: A Visegrad comparison," Journal of Comparative Economics, Elsevier, vol. 34(4), pages 727-753, December.
    8. Luigi Grossi & Fany Nan, 2018. "The influence of renewables on electricity price forecasting: a robust approach," Working Papers 2018/10, Institut d'Economia de Barcelona (IEB).
    9. Hamid Louni, 2008. "Outlier detection in ARMA models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 1057-1065, November.
    10. Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doornik, Jurgen A. & Ooms, Marius, 2008. "Multimodality in GARCH regression models," International Journal of Forecasting, Elsevier, vol. 24(3), pages 432-448.
    2. Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Jussi Tolvi, 2001. "Outliers in eleven Finnish macroeconomic time series," Finnish Economic Papers, Finnish Economic Association, vol. 14(1), pages 14-32, Spring.
    4. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.
    5. Bali, Rakesh & Guirguis, Hany, 2007. "Extreme observations and non-normality in ARCH and GARCH," International Review of Economics & Finance, Elsevier, vol. 16(3), pages 332-346.
    6. N. K. Unnikrishnan, 2004. "Bayesian Subset Model Selection for Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 671-690, September.
    7. F. Javier Trivez & Javier Nievas, 1998. "Analyzing the effects of level shifts and temporary changes on the identification of ARIMA models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(3), pages 409-424.
    8. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. F. Javier TRIVEZ & Angel Mauricio REYES & F. Javier ALIAGA, 2009. "MEXICAN MAQUILA INDUSTRY OUTLOOK. A Quantitative Space-Time Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 9(1).
    10. Veiga, Helena, 2009. "Wavelet-based detection of outliers in volatility models," DES - Working Papers. Statistics and Econometrics. WS ws090403, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Grané, Aurea & Martín-Barragán, Belén & Veiga, Helena, 2014. "Outliers in multivariate Garch models," DES - Working Papers. Statistics and Econometrics. WS ws140503, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Grané, Aurea & Veiga, Helena, 2010. "Wavelet-based detection of outliers in financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2580-2593, November.
    13. Vasiliki Chatzikonstanti & Michail Karoglou, 2022. "Can black swans be tamed with a flexible mean‐variance specification?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3202-3227, July.
    14. Battaglia, Francesco, 2005. "Outliers in functional autoregressive time series," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 323-332, May.
    15. Ossama Mikhail & Curtis J. Eberwein & Jagdish Handa, 2003. "Testing and Estimating Persistence in Canadian Unemployment," Econometrics 0311004, University Library of Munich, Germany.
    16. Baragona, Roberto & Battaglia, Francesco & Calzini, Claudio, 2001. "Genetic algorithms for the identification of additive and innovation outliers in time series," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 1-12, July.
    17. Daiki Maki, 2015. "Wild bootstrap tests for unit root in ESTAR models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 475-490, September.
    18. Daiki Maki & Yasushi Ota, 2021. "Testing for Time-Varying Properties Under Misspecified Conditional Mean and Variance," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1167-1182, April.
    19. Myroslav Pidkuyko, 2014. "Dynamics of Consumption and Dividends over the Business Cycle," CERGE-EI Working Papers wp522, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    20. Kai Yang & Qingqing Zhang & Xinyang Yu & Xiaogang Dong, 2023. "Bayesian inference for a mixture double autoregressive model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 188-207, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:26:y:2005:i:1:p:107-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.