IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i3d10.1007_s00180-021-01162-8.html
   My bibliography  Save this article

Bayesian analysis of mixture autoregressive models covering the complete parameter space

Author

Listed:
  • Davide Ravagli

    (The University of Manchester)

  • Georgi N. Boshnakov

    (The University of Manchester)

Abstract

Mixture autoregressive (MAR) models provide a flexible way to model time series with predictive distributions which depend on the recent history of the process and are able to accommodate asymmetry and multimodality. Bayesian inference for such models offers the additional advantage of incorporating the uncertainty in the estimated models into the predictions. We introduce a new way of sampling from the posterior distribution of the parameters of MAR models which allows for covering the complete parameter space of the models, unlike previous approaches. We also propose a relabelling algorithm to deal a posteriori with label switching. We apply our new method to simulated and real datasets, discuss the accuracy and performance of our new method, as well as its advantages over previous studies. The idea of density forecasting using MCMC output is also introduced.

Suggested Citation

  • Davide Ravagli & Georgi N. Boshnakov, 2022. "Bayesian analysis of mixture autoregressive models covering the complete parameter space," Computational Statistics, Springer, vol. 37(3), pages 1399-1433, July.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:3:d:10.1007_s00180-021-01162-8
    DOI: 10.1007/s00180-021-01162-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01162-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01162-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boshnakov, Georgi N., 2009. "Analytic expressions for predictive distributions in mixture autoregressive models," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1704-1709, August.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    4. J. F. Lawless & Marc Fredette, 2005. "Frequentist prediction intervals and predictive distributions," Biometrika, Biometrika Trust, vol. 92(3), pages 529-542, September.
    5. Lau, John W. & So, Mike K.P., 2008. "Bayesian mixture of autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 38-60, September.
    6. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    7. M. C. Jones, 1987. "Randomly Choosing Parameters from the Stationarity and Invertibility Region of Autoregressive–Moving Average Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(2), pages 134-138, June.
    8. Stefano Sampietro, 2006. "Bayesian analysis of mixture of autoregressive components with an application to financial market volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(3), pages 225-242, May.
    9. repec:dau:papers:123456789/4648 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paroli, Roberta & Spezia, Luigi, 2008. "Bayesian inference in non-homogeneous Markov mixtures of periodic autoregressions with state-dependent exogenous variables," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2311-2330, January.
    2. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    4. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    5. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
    6. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    7. Billio, M. & Monfort, A. & Robert, C. P., 1999. "Bayesian estimation of switching ARMA models," Journal of Econometrics, Elsevier, vol. 93(2), pages 229-255, December.
    8. Sylvia Kaufmann & Sylvia Frühwirth‐Schnatter, 2002. "Bayesian analysis of switching ARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(4), pages 425-458, July.
    9. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    10. Lee, Sik-Yum & Song, Xin-Yuan, 2008. "On Bayesian estimation and model comparison of an integrated structural equation model," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4814-4827, June.
    11. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    12. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    13. Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2007. "Estimating Stochastic Volatility Models Using Daily Returns and Realized Volatility Simultaneously ( Revised in March 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2," CARF F-Series CARF-F-108, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    14. Dellaportas, Petros & Tsionas, Mike G., 2019. "Importance sampling from posterior distributions using copula-like approximations," Journal of Econometrics, Elsevier, vol. 210(1), pages 45-57.
    15. Ehlers, Ricardo S., 2012. "Computational tools for comparing asymmetric GARCH models via Bayes factors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 858-867.
    16. Takahashi, Makoto & Omori, Yasuhiro & Watanabe, Toshiaki, 2009. "Estimating stochastic volatility models using daily returns and realized volatility simultaneously," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2404-2426, April.
    17. Ioannis Papageorgiou & Ioannis Kontoyiannis, 2023. "The Bayesian Context Trees State Space Model for time series modelling and forecasting," Papers 2308.00913, arXiv.org, revised Oct 2023.
    18. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    19. Tian, Maoxi & El Khoury, Rim & Alshater, Muneer M., 2023. "The nonlinear and negative tail dependence and risk spillovers between foreign exchange and stock markets in emerging economies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    20. Umar, Muhammad & Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Furqan, Mehreen, 2023. "Asymmetric volatility structure of equity returns: Evidence from an emerging market," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 330-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:3:d:10.1007_s00180-021-01162-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.