IDEAS home Printed from https://ideas.repec.org/p/ulp/sbbeta/2006-10.html
   My bibliography  Save this paper

Partial Likelihood Estimation of a Cox Model with Random Effects: an EM Algorithm based on Penalized Likelihood

Author

Listed:
  • Guillaume Horny

Abstract

The aim of this paper is to present a general EM algorithm to estimate Mixed Proportional Hazard models including more than one random effect, through partial likelihood. We assume only that the mixing distributions admit Laplace transforms. We show how to transform inference in a single complicated model in the estimation of MPH models involving only a single frailty, which are easily manageable. We then face on gamma unobserved heterogeneity. This choice is a weak assumption as the heterogeneity distribution among survivors converges to a gamma distribution, often quickly, for many types of unobserved heterogeneity distributions. The proposed approach can thus be used to estimate a wide class of models. We describe how to use the penalized partial likelihood within the EM algorithm, to improve speed and stability. The behaviour of the estimator on different clusterings and sample sizes is assessed through a Monte Carlo study. We also provide an application on the ratiffcation of ILO conventions by developing countries over the period 1975-1995. Both the simulations and the empirical results indicate an important decrease in computing time. Furthermore, our procedure converges in settings where a standard EM algorithm does not.

Suggested Citation

  • Guillaume Horny, 2006. "Partial Likelihood Estimation of a Cox Model with Random Effects: an EM Algorithm based on Penalized Likelihood," Working Papers of BETA 2006-10, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
  • Handle: RePEc:ulp:sbbeta:2006-10
    as

    Download full text from publisher

    File URL: http://beta.u-strasbg.fr/WP/2006/2006-10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J.J. Heckman & E.E. Leamer (ed.), 2001. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 5, number 5.
    2. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    3. Vu, Hien T. V. & Knuiman, Matthew W., 2002. "A hybrid ML-EM algorithm for calculation of maximum likelihood estimates in semiparametric shared frailty models," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 173-187, July.
    4. Heckman, James J. & Singer, Burton, 1984. "Econometric duration analysis," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 63-132.
    5. Kelvin K. W. Yau, 2001. "Multilevel Models for Survival Analysis with Random Effects," Biometrics, The International Biometric Society, vol. 57(1), pages 96-102, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerard J. van den Berg & Antoine Bozio & Mónica Costa Dias, 2020. "Policy discontinuity and duration outcomes," Quantitative Economics, Econometric Society, vol. 11(3), pages 871-916, July.
    2. van den Berg, Gerard J. & Back Kjaersgaard, Lene & Rosholm, Michael, 2014. "To meet or not to meet, that is the question - short-run effects of high-frequency meetings with case workers," Working Paper Series 2014:6, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    3. Guillaume Horny & Dragana Djurdjevic & Bernhard Boockmann & François Laisney, 2008. "Bayesian Estimation of Cox Models with Non-nested Random Effects: an Application to the Ratification Of ILO Conventions by Developing Countries," Annals of Economics and Statistics, GENES, issue 89, pages 193-214.
    4. Joshua S. Gans & David H. Hsu & Scott Stern, 2008. "The Impact of Uncertain Intellectual Property Rights on the Market for Ideas: Evidence from Patent Grant Delays," Management Science, INFORMS, vol. 54(5), pages 982-997, May.
    5. Bijwaard, Govert, 2011. "Unobserved Heterogeneity in Multiple-Spell Multiple-States Duration Models," IZA Discussion Papers 5748, Institute of Labor Economics (IZA).
    6. Hausman, Jerry A. & Woutersen, Tiemen, 2014. "Estimating a semi-parametric duration model without specifying heterogeneity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 114-131.
    7. Wienke, Andreas & Kuss, Oliver, 2009. "Random effects Weibull regression model for occupational lifetime," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1249-1250, August.
    8. Andreas Groll & Gerhard Tutz, 2017. "Variable selection in discrete survival models including heterogeneity," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 305-338, April.
    9. Hess, Wolfgang & Persson, Maria, 2010. "The Duration of Trade Revisited. Continuous-Time vs. Discrete-Time Hazards," Working Papers 2010:1, Lund University, Department of Economics.
    10. Jaap H. Abbring & Gerard J. Van Den Berg, 2007. "The unobserved heterogeneity distribution in duration analysis," Biometrika, Biometrika Trust, vol. 94(1), pages 87-99.
    11. Arkadiusz Szydlowski, 2015. "Endogenous Censoring in the Mixed Proportional Hazard Model with an Application to Optimal Unemployment Insurance," Discussion Papers in Economics 15/06, Division of Economics, School of Business, University of Leicester.
    12. Yolanda Rebollo Sanz, 2009. "Landing a Permanent Contract: Do Job Interruptions and Employer Diversification Matter?," Working Papers 09.07, Universidad Pablo de Olavide, Department of Economics.
    13. Biewen Martin & Seifert Stefanie, 2018. "Potential Parenthood and Career Progression of Men and Women – A Simultaneous Hazards Approach," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 18(2), pages 1-22, April.
    14. Nicoletti, Cheti & Rondinelli, Concetta, 2010. "The (mis)specification of discrete duration models with unobserved heterogeneity: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 159(1), pages 1-13, November.
    15. Brinch, Christian N., 2007. "Nonparametric Identification Of The Mixed Hazards Model With Time-Varying Covariates," Econometric Theory, Cambridge University Press, vol. 23(2), pages 349-354, April.
    16. Lau, John W., 2006. "Bayesian semi-parametric modeling for mixed proportional hazard models with right censoring," Statistics & Probability Letters, Elsevier, vol. 76(7), pages 719-728, April.
    17. Hess, Wolfgang & Persson, Maria, 2009. "Survival and Death in International Trade - Discrete-Time Durations of EU Imports," Working Papers 2009:12, Lund University, Department of Economics.
    18. Lewbel, Arthur & Lu, Xun & Su, Liangjun, 2015. "Specification testing for transformation models with an application to generalized accelerated failure-time models," Journal of Econometrics, Elsevier, vol. 184(1), pages 81-96.
    19. Honore, Bo & Khan, Shakeeb & Powell, James L., 2002. "Quantile regression under random censoring," Journal of Econometrics, Elsevier, vol. 109(1), pages 67-105, July.
    20. Botosaru, Irene, 2020. "Nonparametric analysis of a duration model with stochastic unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 217(1), pages 112-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulp:sbbeta:2006-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bestrfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.