IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v47y2000i3p229-241.html
   My bibliography  Save this article

Bayesian reliability modeling for masked system lifetime data

Author

Listed:
  • Kuo, Lynn
  • Yang, Tae Young

Abstract

In the masked system lifetime data, the exact component that causes the system's failure is often unknown. For each series system at test, we observe its system's failure time and a set of components that includes the component actually causing the system to fail. The objective is to make inferences for the reliability of the components. In this paper we consider various probability models for the conditional masking probabilities that identify the set of possible failed components given the true cause of failure and the system's failure time. In addition to exponential distributions for the component lifetimes, we consider Weibull distributions. A Bayesian approach that uses Gibbs sampling will be developed for each of the models. Model selection by a predictive approach will also be developed. We show that improved inference can be obtained by modeling the masking probabilities.

Suggested Citation

  • Kuo, Lynn & Yang, Tae Young, 2000. "Bayesian reliability modeling for masked system lifetime data," Statistics & Probability Letters, Elsevier, vol. 47(3), pages 229-241, April.
  • Handle: RePEc:eee:stapro:v:47:y:2000:i:3:p:229-241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00160-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Reiser & I. Guttman & Dennis K. J. Lin & Frank M. Guess & John S. Usher, 1995. "Bayesian Inference for Masked System Lifetime Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(1), pages 79-90, March.
    2. Gastaldi, Tommaso, 1994. "Improved maximum likelihood estimation for component reliabilities with Miyakawa--Usher--Hodgson--Guess' estimators under censored search for the cause of failure," Statistics & Probability Letters, Elsevier, vol. 19(1), pages 5-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazucheli, Josmar & Louzada-Neto, Francisco & Achcar, Jorge A., 2001. "Bayesian inference for polyhazard models in the presence of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 38(1), pages 1-14, November.
    2. Yu, Qiqing & Qin, Hao & Wang, Jiaping, 2010. "About conditional masking probability models," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1174-1179, August.
    3. Qiqing Yu & G. Wong & Hao Qin & Jiaping Wang, 2012. "Random partition masking model for censored and masked competing risks data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 69-85, February.
    4. Juliana Fachini & Edwin Ortega & Francisco Louzada-Neto, 2008. "Influence diagnostics for polyhazard models in the presence of covariates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(4), pages 413-433, October.
    5. Kozumi, Hideo, 2004. "Posterior analysis of latent competing risk models by parallel tempering," Computational Statistics & Data Analysis, Elsevier, vol. 46(3), pages 441-458, June.
    6. Yosra Yousif & Faiz Elfaki & Meftah Hrairi & Oyelola Adegboye, 2022. "Bayesian Analysis of Masked Competing Risks Data Based on Proportional Subdistribution Hazards Model," Mathematics, MDPI, vol. 10(17), pages 1-10, August.
    7. Himanshu Rai & Sanjeev K. Tomer & Anoop Chaturvedi, 2021. "Robust estimation with variational Bayes in presence of competing risks," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 207-223, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chanseok Park & Min Wang, 2024. "Parameter Estimation of Birnbaum-Saunders Distribution under Competing Risks Using the Quantile Variant of the Expectation-Maximization Algorithm," Mathematics, MDPI, vol. 12(11), pages 1-17, June.
    2. Jiahui Li & Qiqing Yu, 2016. "A consistent NPMLE of the joint distribution function with competing risks data under the dependent masking and right-censoring model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 63-99, January.
    3. Qiqing Yu & G. Wong & Hao Qin & Jiaping Wang, 2012. "Random partition masking model for censored and masked competing risks data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 69-85, February.
    4. Gupta, Shanti S. & Gastaldi, Tommaso, 1996. "Life testing for multi-component systems with incomplete information on the cause of failure: a study on some inspection strategies," Computational Statistics & Data Analysis, Elsevier, vol. 22(4), pages 373-393, August.
    5. Francisco Louzada-Neto & Vicente G. Cancho & Gladys D.C. Barriga, 2011. "The Poisson--exponential distribution: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(6), pages 1239-1248, April.
    6. Kozumi, Hideo, 2004. "Posterior analysis of latent competing risk models by parallel tempering," Computational Statistics & Data Analysis, Elsevier, vol. 46(3), pages 441-458, June.
    7. Louzada, Francisco & Roman, Mari & Cancho, Vicente G., 2011. "The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2516-2524, August.
    8. Cancho, Vicente G. & Louzada-Neto, Franscisco & Barriga, Gladys D.C., 2011. "The Poisson-exponential lifetime distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 677-686, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:47:y:2000:i:3:p:229-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.