IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v35y2000i1p43-65.html
   My bibliography  Save this article

Alternating kernel and mixture density estimates

Author

Listed:
  • Priebe, Carey E.
  • Marchette, David J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Priebe, Carey E. & Marchette, David J., 2000. "Alternating kernel and mixture density estimates," Computational Statistics & Data Analysis, Elsevier, vol. 35(1), pages 43-65, November.
  • Handle: RePEc:eee:csdana:v:35:y:2000:i:1:p:43-65
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(00)00003-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marron, J.S. & Schmitz, H.-P., 1992. "Simultaneous Density Estimation of Several Income Distributions," Econometric Theory, Cambridge University Press, vol. 8(4), pages 476-488, December.
    2. Cao, Ricardo & Cuevas, Antonio & Fraiman, Ricardo, 1995. "Minimum distance density-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 20(6), pages 611-631, December.
    3. G. J. McLachlan, 1987. "On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 318-324, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. ChafaI¨, Djalil & Loubes, Jean-Michel, 2006. "On nonparametric maximum likelihood for a class of stochastic inverse problems," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1225-1237, July.
    2. Sangyeol Lee & Taewook Lee, 2008. "Robust estimation for the order of finite mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(3), pages 365-390, November.
    3. Priebe, Carey E. & Miller, Michael I. & Tilak Ratnanather, J., 2006. "Segmenting magnetic resonance images via hierarchical mixture modelling," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 551-567, January.
    4. Robin, Stephane & Bar-Hen, Avner & Daudin, Jean-Jacques & Pierre, Laurent, 2007. "A semi-parametric approach for mixture models: Application to local false discovery rate estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5483-5493, August.
    5. Woo, Mi-Ja & Sriram, T.N., 2007. "Robust estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4379-4392, May.
    6. Jones, M.C. & Henderson, D.A., 2009. "Maximum likelihood kernel density estimation: On the potential of convolution sieves," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3726-3733, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Zelli & Maria Grazia Pittau, 2006. "Empirical evidence of income dynamics across EU regions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 605-628.
    2. Fetene B. Tekle & Dereje W. Gudicha & Jeroen K. Vermunt, 2016. "Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 209-224, June.
    3. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    4. Flachaire, Emmanuel & Nunez, Olivier, 2007. "Estimation of the income distribution and detection of subpopulations: An explanatory model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3368-3380, April.
    5. Leone Leonida & Leone Leonida & Daniel Montolio, 2003. "Public Capital, Growth and Convergence in Spain. A Counterfactual Density Estimation Approach," Working Papers 2003/3, Institut d'Economia de Barcelona (IEB).
    6. Riccardo Massari, 2009. "Is income becoming more polarized Italy? A closer look with a distributional approach," Working Papers 1, Doctoral School of Economics, Sapienza University of Rome.
    7. Giovanni Caggiano & Leone Leonida, 2013. "Multimodality in the distribution of GDP and the absolute convergence hypothesis," Empirical Economics, Springer, vol. 44(3), pages 1203-1215, June.
    8. Fernández, D. & Arnold, R. & Pledger, S., 2016. "Mixture-based clustering for the ordered stereotype model," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 46-75.
    9. Yuan Liu & Hongyun Liu, 2019. "Effects of Distance and Shape on the Estimation of the Piecewise Growth Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 659-677, October.
    10. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    11. Park, Seong C. & Brorsen, B. Wade & Stoecker, Arthur L. & Hattey, Jeffory A., 2012. "Forage Response to Swine Effluent: A Cox Nonnested Test of Alternative Functional Forms Using a Fast Double Bootstrap," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 44(4), pages 593-606, November.
    12. Geert Soete & Willem Heiser, 1993. "A latent class unfolding model for analyzing single stimulus preference ratings," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 545-565, December.
    13. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    14. Un Jung Lee & ShengLi Tzeng & Yu-Chuan Chen & James J Chen, 2017. "Development of Predictive Signatures for Treatment Selection in Precision Medicine," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 2(4), pages 83-88, August.
    15. Hennig, Christian, 2008. "Dissolution point and isolation robustness: Robustness criteria for general cluster analysis methods," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1154-1176, July.
    16. Kanchewa, Stella & Christensen, Kirsten M. & Poon, Cyanea Y.S. & Parnes, McKenna & Schwartz, Sarah, 2021. "More than fun and games? Understanding the role of school-based mentor-mentee match activity profiles in relationship processes and outcomes," Children and Youth Services Review, Elsevier, vol. 120(C).
    17. Leone Leonida & Antonio Giangreco & Sergio Scicchitano & Marco Biagetti, 2023. "Britain and BrExit: Is the UK more attractive to supervisors? An analysis of the wage premium to supervision across the EU," British Journal of Industrial Relations, London School of Economics, vol. 61(2), pages 291-312, June.
    18. Michel Wedel & Wayne DeSarbo, 1995. "A mixture likelihood approach for generalized linear models," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 21-55, March.
    19. Lubrano, Michel & Ndoye, Abdoul Aziz Junior, 2016. "Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 830-846.
    20. Charpentier, Arthur & Flachaire, Emmanuel, 2015. "Log-Transform Kernel Density Estimation Of Income Distribution," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 141-159, Mars-Juin.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:35:y:2000:i:1:p:43-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.