IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v202y2025ics0167947324001373.html
   My bibliography  Save this article

A Bayesian cluster validity index

Author

Listed:
  • Preedasawakul, Onthada
  • Wiroonsri, Nathakhun

Abstract

Selecting the appropriate number of clusters is a critical step in applying clustering algorithms. To assist in this process, various cluster validity indices (CVIs) have been developed. These indices are designed to identify the optimal number of clusters within a dataset. However, users may not always seek the absolute optimal number of clusters but rather a secondary option that better aligns with their specific applications. This realization has led us to introduce a Bayesian cluster validity index (BCVI), which builds upon existing indices. The BCVI utilizes either Dirichlet or generalized Dirichlet priors, resulting in the same posterior distribution. The proposed BCVI is evaluated using the Calinski-Harabasz, CVNN, Davies–Bouldin, silhouette, Starczewski, and Wiroonsri indices for hard clustering and the KWON2, Wiroonsri–Preedasawakul, and Xie–Beni indices for soft clustering as underlying indices. The performance of the proposed BCVI with that of the original underlying indices has been compared. The BCVI offers clear advantages in situations where user expertise is valuable, allowing users to specify their desired range for the final number of clusters. To illustrate this, experiments classified into three different scenarios are conducted. Additionally, the practical applicability of the proposed approach through real-world datasets, such as MRI brain tumor images are presented. These tools are published as a recent R package ‘BayesCVI’.

Suggested Citation

  • Preedasawakul, Onthada & Wiroonsri, Nathakhun, 2025. "A Bayesian cluster validity index," Computational Statistics & Data Analysis, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:csdana:v:202:y:2025:i:c:s0167947324001373
    DOI: 10.1016/j.csda.2024.108053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001373
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:202:y:2025:i:c:s0167947324001373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.