IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2013006.html
   My bibliography  Save this paper

An iterated local search algorithm for the construction of large scale D-optimal experimental designs

Author

Listed:
  • CUERVO, Daniel Palhazi
  • GOOS, Peter
  • SÖRENSEN, Kenneth

Abstract

We focus on the D-optimal design of screening experiments involving main-effects regression models, especially with large numbers of factors and observations. We propose a new selection strategy for the coordinate-exchange algorithm based on an orthogonality measure of the design. Computational experiments show that this strategy finds better designs within an execution time that is 30% shorter than other strategies. We also provide strong evidence that the use of the prediction variance as a selection strategy does not provide any added value in comparison to simpler selection strategies. Additionally, we propose a new iterated local search algorithm for the construction of D-optimal experimental designs. This new algorithm clearly outperforms the original coordinate-exchange algorithm.

Suggested Citation

  • CUERVO, Daniel Palhazi & GOOS, Peter & SÖRENSEN, Kenneth, 2013. "An iterated local search algorithm for the construction of large scale D-optimal experimental designs," Working Papers 2013006, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2013006
    as

    Download full text from publisher

    File URL: https://repository.uantwerpen.be/docman/irua/dbaaab/8d1a6cf1.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grace Montepiedra, 1998. "Application of genetic algorithms to the construction of exact D-optimal designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(6), pages 817-826.
    2. Arnouts, Heidi & Goos, Peter, 2010. "Update formulas for split-plot and block designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3381-3391, December.
    3. Nguyen, Nam-Ky & Miller, Alan J., 1992. "A review of some exchange algorithms for constructing discrete D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 14(4), pages 489-498, November.
    4. Lejeune, Miguel A., 2003. "Heuristic optimization of experimental designs," European Journal of Operational Research, Elsevier, vol. 147(3), pages 484-498, June.
    5. Sung Jung, Joo & Jin Yum, Bong, 1996. "Construction of exact D-optimal designs by tabu search," Computational Statistics & Data Analysis, Elsevier, vol. 21(2), pages 181-191, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karvanen, Juha & Kulathinal, Sangita & Gasbarra, Dario, 2009. "Optimal designs to select individuals for genotyping conditional on observed binary or survival outcomes and non-genetic covariates," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1782-1793, March.
    2. Ioannidis Evangelos & Merkouris Takis & Zhang Li-Chun & Karlberg Martin & Petrakos Michalis & Reis Fernando & Stavropoulos Photis, 2016. "On a Modular Approach to the Design of Integrated Social Surveys," Journal of Official Statistics, Sciendo, vol. 32(2), pages 259-286, June.
    3. Harman, Radoslav & Filová, Lenka, 2014. "Computing efficient exact designs of experiments using integer quadratic programming," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1159-1167.
    4. Arnouts, Heidi & Goos, Peter, 2010. "Update formulas for split-plot and block designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3381-3391, December.
    5. Fewell, Jason E. & Bergtold, Jason S. & Williams, Jeffery R., 2016. "Farmers' willingness to contract switchgrass as a cellulosic bioenergy crop in Kansas," Energy Economics, Elsevier, vol. 55(C), pages 292-302.
    6. Moein Saleh & Ming-Hung Kao & Rong Pan, 2017. "Design D-optimal event-related functional magnetic resonance imaging experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 73-91, January.
    7. JONES, Bradley & GOOS, Peter, 2012. "I-optimal versus D-optimal split-plot response surface designs," Working Papers 2012002, University of Antwerp, Faculty of Business and Economics.
    8. Bergtold, Jason S. & Shanoyan, Aleksan & Fewell, Jason E. & Williams, Jeffery R., 2017. "Annual bioenergy crops for biofuels production: Farmers' contractual preferences for producing sweet sorghum," Energy, Elsevier, vol. 119(C), pages 724-731.
    9. Smucker, Byran J. & Castillo, Enrique del & Rosenberger, James L., 2012. "Model-robust designs for split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4111-4121.
    10. Szu Hui Ng & Stephen E. Chick, 2004. "Design of follow‐up experiments for improving model discrimination and parameter estimation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(8), pages 1129-1148, December.
    11. SYAFITRI, Utami & SARTONO, Bagus & GOOS, Peter, 2015. "D- and I-optimal design of mixture experiments in the presence of ingredient availability constraints," Working Papers 2015003, University of Antwerp, Faculty of Business and Economics.
    12. Grace Montepiedra, 1998. "Application of genetic algorithms to the construction of exact D-optimal designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(6), pages 817-826.
    13. Nguyen, Nam-Ky & Liu, Min-Qian, 2008. "An algorithmic approach to constructing mixed-level orthogonal and near-orthogonal arrays," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5269-5276, August.
    14. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    15. García-Ródenas, Ricardo & García-García, José Carlos & López-Fidalgo, Jesús & Martín-Baos, José Ángel & Wong, Weng Kee, 2020. "A comparison of general-purpose optimization algorithms for finding optimal approximate experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    16. Godolphin, J.D. & Warren, H.R., 2014. "An efficient procedure for the avoidance of disconnected incomplete block designs," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1134-1146.
    17. Sung Jung, Joo & Jin Yum, Bong, 1996. "Construction of exact D-optimal designs by tabu search," Computational Statistics & Data Analysis, Elsevier, vol. 21(2), pages 181-191, February.
    18. Masoudi, Ehsan & Holling, Heinz & Wong, Weng Kee, 2017. "Application of imperialist competitive algorithm to find minimax and standardized maximin optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 330-345.
    19. Dongying Wang & Sumin Wang, 2023. "Constructing Optimal Designs for Order-of-Addition Experiments Using a Hybrid Algorithm," Mathematics, MDPI, vol. 11(11), pages 1-20, May.
    20. Vieira Jr., Hélcio & Sanchez, Susan & Kienitz, Karl Heinz & Belderrain, Mischel Carmen Neyra, 2011. "Generating and improving orthogonal designs by using mixed integer programming," European Journal of Operational Research, Elsevier, vol. 215(3), pages 629-638, December.

    More about this item

    Keywords

    Optimal design of experiments; D-optimality criterion; Metaheuristic; Iterated local search; Coordinate-exchange algorithm;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2013006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joeri Nys (email available below). General contact details of provider: https://edirc.repec.org/data/ftufsbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.