IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v38y2020i1p80-92.html
   My bibliography  Save this article

Volatility Martingale Difference Divergence Matrix and Its Application to Dimension Reduction for Multivariate Volatility

Author

Listed:
  • Chung Eun Lee
  • Xiaofeng Shao

Abstract

In this article, we propose the so-called volatility martingale difference divergence matrix (VMDDM) to quantify the conditional variance dependence of a random vector Y∈Rp$Y\in \mathbb {R}^p$ given X∈Rq$X\in \mathbb {R}^q$, building on the recent work on martigale difference divergence matrix (MDDM) that measures the conditional mean dependence. We further generalize VMDDM to the time series context and apply it to do dimension reduction for multivariate volatility, following the recent work by Hu and Tsay and Li et al. Unlike the latter two papers, our metric is easy to compute, can fully capture nonlinear serial dependence and involves less user-chosen numbers. Furthermore, we propose a variant of VMDDM and apply it to the estimation of conditional uncorrelated components model (Fan, Wang, and Yao 2008). Simulation and data illustration show that our method can perform well in comparison with the existing ones with less computational time, and can outperform others in cases of strong nonlinear dependence.

Suggested Citation

  • Chung Eun Lee & Xiaofeng Shao, 2020. "Volatility Martingale Difference Divergence Matrix and Its Application to Dimension Reduction for Multivariate Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 80-92, January.
  • Handle: RePEc:taf:jnlbes:v:38:y:2020:i:1:p:80-92
    DOI: 10.1080/07350015.2018.1458621
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2018.1458621
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2018.1458621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Lu & Ke, Chenlu & Yin, Xiangrong & Yu, Zhou, 2023. "Generalized martingale difference divergence: Detecting conditional mean independence with applications in variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:38:y:2020:i:1:p:80-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.