Semiparametric regression analysis of clustered survival data with semi-competing risks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2018.02.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kyu Ha Lee & Francesca Dominici & Deborah Schrag & Sebastien Haneuse, 2016. "Hierarchical Models for Semicompeting Risks Data With Application to Quality of End-of-Life Care for Pancreatic Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1075-1095, July.
- Samuli Ripatti & Juni Palmgren, 2000. "Estimation of Multivariate Frailty Models Using Penalized Partial Likelihood," Biometrics, The International Biometric Society, vol. 56(4), pages 1016-1022, December.
- Jinfeng Xu & John D. Kalbfleisch & Beechoo Tai, 2010. "Statistical Analysis of Illness–Death Processes and Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 66(3), pages 716-725, September.
- Jin‐Jian Hsieh & Weijing Wang & A. Adam Ding, 2008. "Regression analysis based on semicompeting risks data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 3-20, February.
- Malka Gorfine & Li Hsu, 2011. "Frailty-Based Competing Risks Model for Multivariate Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 415-426, June.
- Lajmi Lakhal & Louis-Paul Rivest & Belkacem Abdous, 2008. "Estimating Survival and Association in a Semicompeting Risks Model," Biometrics, The International Biometric Society, vol. 64(1), pages 180-188, March.
- Limin Peng & Jason P. Fine, 2007. "Regression Modeling of Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 63(1), pages 96-108, March.
- Brian S. Caffo & Wolfgang Jank & Galin L. Jones, 2005. "Ascent‐based Monte Carlo expectation– maximization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 235-251, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Philipson, Pete & Hickey, Graeme L. & Crowther, Michael J. & Kolamunnage-Dona, Ruwanthi, 2020. "Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
- Murray, James & Philipson, Pete, 2023. "Fast estimation for generalised multivariate joint models using an approximate EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Hirofumi Michimae & Takeshi Emura, 2022. "Likelihood Inference for Copula Models Based on Left-Truncated and Competing Risks Data from Field Studies," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
- Prakash Chandra & Arvind Kumar Alok & Yogesh Mani Tripathi & Liang Wang, 2024. "Inference for A Generalized Family of Distributions Under Partially Observed Left Truncated and Right Censored Competing Risks Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 809-844, November.
- Murray, James & Philipson, Pete, 2022. "A fast approximate EM algorithm for joint models of survival and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
- Zhang, Cuihong & Ning, Jing & Cai, Jianwen & Squires, James E. & Belle, Steven H. & Li, Ruosha, 2024. "Dynamic risk score modeling for multiple longitudinal risk factors and survival," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
- Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
- Xifen Huang & Jinfeng Xu & Hao Guo & Jianhua Shi & Wenjie Zhao, 2022. "An MM Algorithm for the Frailty-Based Illness Death Model with Semi-Competing Risks Data," Mathematics, MDPI, vol. 10(19), pages 1-13, October.
- Bo-Hong Wu & Hirofumi Michimae & Takeshi Emura, 2020. "Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty–copula model," Computational Statistics, Springer, vol. 35(4), pages 1525-1552, December.
- Luiza S. C. Piancastelli & Wagner Barreto-Souza & Vinícius D. Mayrink, 2021. "Generalized inverse-Gaussian frailty models with application to TARGET neuroblastoma data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 979-1010, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
- Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
- Menggang Yu & Constantin T. Yiannoutsos, 2015. "Marginal and Conditional Distribution Estimation from Double-sampled Semi-competing Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 87-103, March.
- Yang Li & Hao Liu & Xiaoshen Wang & Wanzhu Tu, 2022. "Semi‐parametric time‐to‐event modelling of lengths of hospital stays," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1623-1647, November.
- Heuchenne, Cedric & Laurent, Stephane & Legrand, Catherine & Van Keilegom, Ingrid, 2011. "Likelihood based inference for semi-competing risks," LIDAM Discussion Papers ISBA 2011022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Xifen Huang & Jinfeng Xu & Hao Guo & Jianhua Shi & Wenjie Zhao, 2022. "An MM Algorithm for the Frailty-Based Illness Death Model with Semi-Competing Risks Data," Mathematics, MDPI, vol. 10(19), pages 1-13, October.
- Jing Yang & Limin Peng, 2018. "Estimating cross quantile residual ratio with left-truncated semi-competing risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 652-674, October.
- Hsieh, Jin-Jian & Hsu, Chia-Hao, 2018. "Estimation of the survival function with redistribution algorithm under semi-competing risks data," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 1-6.
- Renke Zhou & Hong Zhu & Melissa Bondy & Jing Ning, 2016. "Semiparametric model for semi-competing risks data with application to breast cancer study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 456-471, July.
- Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
- Xiaodong Luo & Hong Tian & Surya Mohanty & Wei Yann Tsai, 2015. "An alternative approach to confidence interval estimation for the win ratio statistic," Biometrics, The International Biometric Society, vol. 71(1), pages 139-145, March.
- Chia-Hui Huang, 2019. "Mixture regression models for the gap time distributions and illness–death processes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 168-188, January.
- Jin-Jian Hsieh & Hong-Rui Wang, 2018. "Quantile regression based on counting process approach under semi-competing risks data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 395-419, April.
- Daniel Nevo & Deborah Blacker & Eric B. Larson & Sebastien Haneuse, 2022. "Modeling semi‐competing risks data as a longitudinal bivariate process," Biometrics, The International Biometric Society, vol. 78(3), pages 922-936, September.
- Il Do Ha & Liming Xiang & Mengjiao Peng & Jong-Hyeon Jeong & Youngjo Lee, 2020. "Frailty modelling approaches for semi-competing risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 109-133, January.
- Qui Tran & Kelley M. Kidwell & Alex Tsodikov, 2018. "A joint model of cancer incidence, metastasis, and mortality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 385-406, July.
- Huazhen Lin & Ling Zhou & Chunhong Li & Yi Li, 2014. "Semiparametric transformation models for semicompeting survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 599-607, September.
- Beate Sildnes & Bo Henry Lindqvist, 2018. "Modeling of semi-competing risks by means of first passage times of a stochastic process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 153-175, January.
- Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.
- Lu, Shuiyun & Chen, Xiaolin & Xu, Sheng & Liu, Chunling, 2020. "Joint model-free feature screening for ultra-high dimensional semi-competing risks data," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
More about this item
Keywords
Copula; Clustered data; Monte Carlo EM algorithm; Proportional hazards model; Random effects; Semi-competing risks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:124:y:2018:i:c:p:53-70. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.