IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/paby6_v1.html
   My bibliography  Save this paper

Hybrid elicitation and quantile-parametrized likelihood

Author

Listed:
  • Perepolkin, Dmytro
  • Goodrich, Benjamin
  • Sahlin, Ullrika

Abstract

This paper extends the application of quantile-based Bayesian inference to probability distributions defined in terms of quantiles of observable quantities. Quantile-parameterized distributions are characterized by high shape flexibility and parameter interpretability, making them useful for eliciting information about observables. To encode uncertainty in the quantiles elicited from experts, we propose a Bayesian model based on the metalog distribution and a variant of the Dirichlet prior. We discuss the resulting hybrid expert elicitation protocol, which aims to characterize uncertainty in parameters by asking questions about observable quantities. We also compare and contrast this approach with parametric and predictive elicitation methods.

Suggested Citation

  • Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2021. "Hybrid elicitation and quantile-parametrized likelihood," OSF Preprints paby6_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:paby6_v1
    DOI: 10.31219/osf.io/paby6_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/6152be62ec7885011a413b3e/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/paby6_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Crowder, 1992. "Bayesian priors based on a parameter transformation using the distribution function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(3), pages 405-416, September.
    2. Stuart G. Coles & Jonathan A. Tawn, 1996. "A Bayesian Analysis of Extreme Rainfall Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 463-478, December.
    3. Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2023. "The tenets of quantile-based inference in Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    4. Perepolkin, Dmytro & Lindsröm, Erik & Sahlin, Ullrika, 2023. "Quantile-parameterized distributions for expert knowledge elicitation," OSF Preprints tq3an, Center for Open Science.
    5. Fadlalla Elfadaly & Paul Garthwaite, 2013. "Eliciting Dirichlet and Connor–Mosimann prior distributions for multinomial models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 628-646, November.
    6. Jonah Gabry & Daniel Simpson & Aki Vehtari & Michael Betancourt & Andrew Gelman, 2019. "Visualization in Bayesian workflow," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 389-402, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian Hartley, 2020. "Corridor stability of the Kaleckian growth model: a Markov-switching approach," Working Papers 2013, New School for Social Research, Department of Economics, revised Nov 2020.
    2. Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2023. "The tenets of quantile-based inference in Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    3. Brian Hartley, 2022. "Episodic incidence of Harrodian instability and the Kaleckian growth model: A Markov‐switching approach," Metroeconomica, Wiley Blackwell, vol. 73(1), pages 268-290, February.
    4. Karan Bhuwalka & Eunseo Choi & Elizabeth A. Moore & Richard Roth & Randolph E. Kirchain & Elsa A. Olivetti, 2023. "A hierarchical Bayesian regression model that reduces uncertainty in material demand predictions," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 43-55, February.
    5. Wang, Bing Xing & Ye, Zhi-Sheng, 2015. "Inference on the Weibull distribution based on record values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 26-36.
    6. Andrea L Liebl & Jeff S Wesner & Andrew F Russell & Aaron W Schrey, 2021. "Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-13, June.
    7. Bernard Baffour & Sumonkanti Das & Mu Li & Alice Richardson, 2024. "The Utility of Socioeconomic and Remoteness Indicators in Understanding the Geographical Variation in the Regional Prevalence of Early Childhood Vulnerability in Australia," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 17(4), pages 1791-1827, August.
    8. Matthias Kloft & Raphael Hartmann & Andreas Voss & Daniel W. Heck, 2023. "The Dirichlet Dual Response Model: An Item Response Model for Continuous Bounded Interval Responses," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 888-916, September.
    9. Ameer Dharamshi & Bilal Barakat & Leontine Alkema & Manos Antoninis, 2022. "A Bayesian model for estimating Sustainable Development Goal indicator 4.1.2: School completion rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1822-1864, November.
    10. Juan Gonzalez & Daniela Rodriguez & Mariela Sued, 2013. "Threshold selection for extremes under a semiparametric model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 481-500, November.
    11. Aldo Gardini & Enrico Fabrizi & Carlo Trivisano, 2022. "Poverty and inequality mapping based on a unit‐level log‐normal mixture model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2073-2096, October.
    12. Hsieh, Ping-Hung, 2002. "An exploratory first step in teletraffic data modeling: evaluation of long-run performance of parameter estimators," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 263-283, August.
    13. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    14. Lindeløv, Jonas Kristoffer, 2020. "mcp: An R Package for Regression With Multiple Change Points," OSF Preprints fzqxv, Center for Open Science.
    15. Wagenmakers, Eric-Jan & Sarafoglou, Alexandra & Aarts, Sil Dr. & Albers, Casper J & Algermissen, Johannes & Bahník, Štěpán & van Dongen, Noah N'Djaye Nikolai & Hoekstra, Rink & Moreau, David & van Rav, 2021. "Toward More Transparency in Statistical Practice," MetaArXiv t93cg, Center for Open Science.
    16. Berthold-Georg Englert & Michael Evans & Gun Ho Jang & Hui Khoon Ng & David Nott & Yi-Lin Seah, 2021. "Checking for model failure and for prior-data conflict with the constrained multinomial model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1141-1168, November.
    17. Wagenmakers, Eric-Jan & Sarafoglou, Alexandra & Aarts, Sil Dr. & Albers, Casper J & Algermissen, Johannes & Bahník, Štěpán & van Dongen, Noah N'Djaye Nikolai & Hoekstra, Rink & Moreau, David & van Rav, 2021. "Seven Steps Toward More Transparency in Statistical Practice," MetaArXiv t93cg_v1, Center for Open Science.
    18. Thomas Jagger & James Elsner & R. Burch, 2011. "Climate and solar signals in property damage losses from hurricanes affecting the United States," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 541-557, July.
    19. Xin Zhao & Carl Scarrott & Les Oxley & Marco Reale, 2010. "Extreme value modelling for forecasting market crisis impacts," Applied Financial Economics, Taylor & Francis Journals, vol. 20(1-2), pages 63-72.
    20. Ranjana Ray Chaudhuri & Prateek Sharma, 2020. "Addressing uncertainty in extreme rainfall intensity for semi-arid urban regions: case study of Delhi, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2307-2324, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:paby6_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.