IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i537p348-360.html
   My bibliography  Save this article

Mean and Covariance Estimation for Functional Snippets

Author

Listed:
  • Zhenhua Lin
  • Jane-Ling Wang

Abstract

We consider estimation of mean and covariance functions of functional snippets, which are short segments of functions possibly observed irregularly on an individual specific subinterval that is much shorter than the entire study interval. Estimation of the covariance function for functional snippets is challenging since information for the far off-diagonal regions of the covariance structure is completely missing. We address this difficulty by decomposing the covariance function into a variance function component and a correlation function component. The variance function can be effectively estimated nonparametrically, while the correlation part is modeled parametrically, possibly with an increasing number of parameters, to handle the missing information in the far off-diagonal regions. Both theoretical analysis and numerical simulations suggest that this hybrid strategy is effective. In addition, we propose a new estimator for the variance of measurement errors and analyze its asymptotic properties. This estimator is required for the estimation of the variance function from noisy measurements. Supplementary materials for this article are available online.

Suggested Citation

  • Zhenhua Lin & Jane-Ling Wang, 2022. "Mean and Covariance Estimation for Functional Snippets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 348-360, January.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:348-360
    DOI: 10.1080/01621459.2020.1777138
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1777138
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1777138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Yeonjoo & Kim, Hyunsung & Lim, Yaeji, 2023. "Functional principal component analysis for partially observed elliptical process," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:348-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.