IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v179y2023ics0167947322002304.html
   My bibliography  Save this article

Mean regression model for the zero-truncated Poisson distribution and its generalization

Author

Listed:
  • Li, Xun-Jian
  • Sun, Yuan
  • Tian, Guo-Liang
  • Liang, Jiajuan
  • Shi, Jianhua

Abstract

Zero-truncated count data (e.g., days of staying in hospital; survival weeks of female patients with breast cancer) often arise in various fields such as medical studies. To model such data, the zero-truncated Poisson (ZTP) distribution is commonly utilized to investigate the relationship between the response counts and a set of covariates. For existing ZTP regression models, it is very hard to explain the regression coefficients β or it is quite difficult to perform a constrained optimization to calculate the maximum likelihood estimates (MLEs) of β. This paper aims to introduce a new mean regression model for the ZTP distribution with a clear interpretation about the regression coefficients. Because of a challenge that the original Poisson mean parameter λi cannot be expressed explicitly by the ZTP mean parameter μi, an embedded Newton–Raphson algorithm is developed to calculate the MLEs of regression coefficients. The construction of bootstrap confidence intervals is presented and three hypothesis tests (i.e., the likelihood ratio test, the Wald test and the score test) are considered. Furthermore, the ZTP mean regression model is generalized to the mean regression model for the k-truncated Poisson distribution. Simulation studies are conducted and two real data are analyzed to illustrate the proposed model and methods.

Suggested Citation

  • Li, Xun-Jian & Sun, Yuan & Tian, Guo-Liang & Liang, Jiajuan & Shi, Jianhua, 2023. "Mean regression model for the zero-truncated Poisson distribution and its generalization," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002304
    DOI: 10.1016/j.csda.2022.107650
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322002304
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    2. Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107667273, September.
    3. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    4. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    5. M. Khorashadizadeh & A. H. Rezaei Roknabadi & G. R. Mohtashami Borzadaran, 2010. "Variance residual life function in discrete random ageing," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 67-75.
    6. Gurmu, Shiferaw & Trivedi, Pravin K., 1992. "Overdispersion tests for truncated Poisson regression models," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 347-370.
    7. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    8. Rainer Winkelmann, 2008. "Econometric Analysis of Count Data," Springer Books, Springer, edition 0, number 978-3-540-78389-3, June.
    9. Grogger, J T & Carson, Richard T, 1991. "Models for Truncated Counts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(3), pages 225-238, July-Sept.
    10. Gurmu, Shiferaw, 1991. "Tests for Detecting Overdispersion in the Positive Poisson Regression Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(2), pages 215-222, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gurmu, Shiferaw & Rilstone, Paul & Stern, Steven, 1998. "Semiparametric estimation of count regression models1," Journal of Econometrics, Elsevier, vol. 88(1), pages 123-150, November.
    2. V. J. Cano Fernandez & G. Guirao Perez & M. C. Rodriguez Donate & M. E. Romero Rodriguez, 2009. "An analysis of count data models for the study of exclusivity in wine consumption," Applied Economics, Taylor & Francis Journals, vol. 41(12), pages 1563-1574.
    3. Rainer Winkelmann, 2015. "Counting on count data models," IZA World of Labor, Institute of Labor Economics (IZA), pages 148-148, May.
    4. Wang, Jian & Hicks, Diana, 2015. "Scientific teams: Self-assembly, fluidness, and interdependence," Journal of Informetrics, Elsevier, vol. 9(1), pages 197-207.
    5. Damien Euzénat & Meradj Mortezapouraghdam, 2016. "Les changements d’organisation du travail dans les entreprises : quelles conséquences sur les accidents du travail des salariés ?," Économie et Statistique, Programme National Persée, vol. 486(1), pages 129-147.
    6. Mello, Marco & Moscelli, Giuseppe, 2022. "Voting, contagion and the trade-off between public health and political rights: Quasi-experimental evidence from the Italian 2020 polls," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 1025-1052.
    7. Jian Wang & Bart Thijs & Wolfgang Glänzel, 2015. "Interdisciplinarity and Impact: Distinct Effects of Variety, Balance, and Disparity," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    8. Dahen, Hela & Dionne, Georges, 2010. "Scaling models for the severity and frequency of external operational loss data," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1484-1496, July.
    9. Denise Desjardins & Georges Dionne & Yang Lu, 2023. "Hierarchical random‐effects model for the insurance pricing of vehicles belonging to a fleet," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 242-259, March.
    10. Dionne, Georges & Artis, Manuel & Guillen, Montserrat, 1996. "Count data models for a credit scoring system," Journal of Empirical Finance, Elsevier, vol. 3(3), pages 303-325, September.
    11. David Mihaela & Jemna Dănuţ-Vasile, 2015. "Modeling the Frequency of Auto Insurance Claims by Means of Poisson and Negative Binomial Models," Scientific Annals of Economics and Business, Sciendo, vol. 62(2), pages 151-168, July.
    12. Bilgic, Abdulbaki & Florkowski, Wojciech J., 2003. "Truncated-At-Zero Count Data Models With Partial Observability: An Application To The Freshwater Fishing Demand In The Southeastern U.S," 2003 Annual Meeting, February 1-5, 2003, Mobile, Alabama 35185, Southern Agricultural Economics Association.
    13. Dionne, Georges, 1998. "La mesure empirique des problèmes d’information," L'Actualité Economique, Société Canadienne de Science Economique, vol. 74(4), pages 585-606, décembre.
    14. de Rassenfosse, Gaétan & Schoen, Anja & Wastyn, Annelies, 2014. "Selection bias in innovation studies: A simple test," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 287-299.
    15. Gary King, 1989. "A Seemingly Unrelated Poisson Regression Model," Sociological Methods & Research, , vol. 17(3), pages 235-255, February.
    16. Luis Otávio Façanha & Marcelo Resende, 2006. "Hierarchical Structure in Brazilian Industrial Firms: an Econometric Study," Economics Working Papers ECO2006/1, European University Institute.
    17. Papke, Leslie E., 1991. "Interstate business tax differentials and new firm location : Evidence from panel data," Journal of Public Economics, Elsevier, vol. 45(1), pages 47-68, June.
    18. Brambilla, Irene, 2009. "Multinationals, technology, and the introduction of varieties of goods," Journal of International Economics, Elsevier, vol. 79(1), pages 89-101, September.
    19. Dionne, Georges & Gagne, Robert & Gagnon, Francois & Vanasse, Charles, 1997. "Debt, moral hazard and airline safety An empirical evidence," Journal of Econometrics, Elsevier, vol. 79(2), pages 379-402, August.
    20. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.