IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i529p107-122.html
   My bibliography  Save this article

Penalized and Constrained Optimization: An Application to High-Dimensional Website Advertising

Author

Listed:
  • Gareth M. James
  • Courtney Paulson
  • Paat Rusmevichientong

Abstract

Firms are increasingly transitioning advertising budgets to Internet display campaigns, but this transition poses new challenges. These campaigns use numerous potential metrics for success (e.g., reach or click rate), and because each website represents a separate advertising opportunity, this is also an inherently high-dimensional problem. Further, advertisers often have constraints they wish to place on their campaign, such as targeting specific sub-populations or websites. These challenges require a method flexible enough to accommodate thousands of websites, as well as numerous metrics and campaign constraints. Motivated by this application, we consider the general constrained high-dimensional problem, where the parameters satisfy linear constraints. We develop the Penalized and Constrained optimization method (PaC) to compute the solution path for high-dimensional, linearly constrained criteria. PaC is extremely general; in addition to internet advertising, we show it encompasses many other potential applications, such as portfolio estimation, monotone curve estimation, and the generalized lasso. Computing the PaC coefficient path poses technical challenges, but we develop an efficient algorithm over a grid of tuning parameters. Through extensive simulations, we show PaC performs well. Finally, we apply PaC to a proprietary dataset in an exemplar Internet advertising case study and demonstrate its superiority over existing methods in this practical setting. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Gareth M. James & Courtney Paulson & Paat Rusmevichientong, 2020. "Penalized and Constrained Optimization: An Application to High-Dimensional Website Advertising," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 107-122, January.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:107-122
    DOI: 10.1080/01621459.2019.1609970
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1609970
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1609970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaofei Wu & Rongmei Liang & Hu Yang, 2022. "Penalized and constrained LAD estimation in fixed and high dimension," Statistical Papers, Springer, vol. 63(1), pages 53-95, February.
    2. Hana Choi & Carl F. Mela & Santiago R. Balseiro & Adam Leary, 2020. "Online Display Advertising Markets: A Literature Review and Future Directions," Information Systems Research, INFORMS, vol. 31(2), pages 556-575, June.
    3. Ghosal, Rahul & Ghosh, Sujit & Urbanek, Jacek & Schrack, Jennifer A. & Zipunnikov, Vadim, 2023. "Shape-constrained estimation in functional regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:107-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.