IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v32y2005i3p447-466.html
   My bibliography  Save this article

Bayesian Survival Analysis Using Bernstein Polynomials

Author

Listed:
  • I‐SHOU CHANG
  • CHAO A. HSIUNG
  • YUH‐JENN WU
  • CHE‐CHI YANG

Abstract

. Bayesian survival analysis of right‐censored survival data is studied using priors on Bernstein polynomials and Markov chain Monte Carlo methods. These priors easily take into consideration geometric information like convexity or initial guess on the cumulative hazard functions, select only smooth functions, can have large enough support, and can be easily specified and generated. Certain frequentist asymptotic properties of the posterior distribution are established. Simulation studies indicate that these Bayes methods are quite satisfactory.

Suggested Citation

  • I‐Shou Chang & Chao A. Hsiung & Yuh‐Jenn Wu & Che‐Chi Yang, 2005. "Bayesian Survival Analysis Using Bernstein Polynomials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 447-466, September.
  • Handle: RePEc:bla:scjsta:v:32:y:2005:i:3:p:447-466
    DOI: 10.1111/j.1467-9469.2005.00451.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2005.00451.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2005.00451.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    2. Alexandre Leblanc, 2009. "Chung–Smirnov property for Bernstein estimators of distribution functions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 133-142.
    3. Ghosal, Rahul & Ghosh, Sujit & Urbanek, Jacek & Schrack, Jennifer A. & Zipunnikov, Vadim, 2023. "Shape-constrained estimation in functional regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    4. Ander Wilson & Jessica Tryner & Christian L'Orange & John Volckens, 2020. "Bayesian nonparametric monotone regression," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    5. Li-Chu Chien & Yuh-Jenn Wu & Chao A. Hsiung & Lu-Hai Wang & I-Shou Chang, 2015. "Smoothed Lexis Diagrams With Applications to Lung and Breast Cancer Trends in Taiwan," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1000-1012, September.
    6. Mirza Nazmul Hasan & Roel Braekers, 2022. "Modelling the association in bivariate survival data by using a Bernstein copula," Computational Statistics, Springer, vol. 37(2), pages 781-815, April.
    7. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    8. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    9. Claudia Köllmann & Björn Bornkamp & Katja Ickstadt, 2014. "Unimodal regression using Bernstein–Schoenberg splines and penalties," Biometrics, The International Biometric Society, vol. 70(4), pages 783-793, December.
    10. Zheng, Yanbing, 2011. "Shape restriction of the multi-dimensional Bernstein prior for density functions," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 647-651, June.
    11. Yuhui Chen & Timothy Hanson & Jiajia Zhang, 2014. "Accelerated hazards model based on parametric families generalized with Bernstein polynomials," Biometrics, The International Biometric Society, vol. 70(1), pages 192-201, March.
    12. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Osman, Muhtarjan & Ghosh, Sujit K., 2012. "Nonparametric regression models for right-censored data using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 559-573.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:32:y:2005:i:3:p:447-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.