IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i4p1310-1320.html
   My bibliography  Save this article

Autologistic network model on binary data for disease progression study

Author

Listed:
  • Yei Eun Shin
  • Huiyan Sang
  • Dawei Liu
  • Toby A. Ferguson
  • Peter X. K. Song

Abstract

This paper focuses on analysis of spatiotemporal binary data with absorbing states. The research was motivated by a clinical study on amyotrophic lateral sclerosis (ALS), a neurological disease marked by gradual loss of muscle strength over time in multiple body regions. We propose an autologistic regression model to capture complex spatial and temporal dependencies in muscle strength among different muscles. As it is not clear how the disease spreads from one muscle to another, it may not be reasonable to define a neighborhood structure based on spatial proximity. Relaxing the requirement for prespecification of spatial neighborhoods as in existing models, our method identifies an underlying network structure empirically to describe the pattern of spreading disease. The model also allows the network autoregressive effects to vary depending on the muscles’ previous status. Based on the joint distribution derived from this autologistic model, the joint transition probabilities of responses among locations can be estimated and the disease status can be predicted in the next time interval. Model parameters are estimated through maximization of penalized pseudo‐likelihood. Postmodel selection inference was conducted via a bias‐correction method, for which the asymptotic distributions were derived. Simulation studies were conducted to evaluate the performance of the proposed method. The method was applied to the analysis of muscle strength loss from the ALS clinical study.

Suggested Citation

  • Yei Eun Shin & Huiyan Sang & Dawei Liu & Toby A. Ferguson & Peter X. K. Song, 2019. "Autologistic network model on binary data for disease progression study," Biometrics, The International Biometric Society, vol. 75(4), pages 1310-1320, December.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:4:p:1310-1320
    DOI: 10.1111/biom.13111
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13111
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Yan & Sang, Huiyan & Cook, Scott J. & Kellstedt, Paul M., 2023. "Sparse spatially clustered coefficient model via adaptive regularization," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:4:p:1310-1320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.