IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v171y2022ics0167947322000536.html
   My bibliography  Save this article

A generalized correlated Cp criterion for derivative estimation with dependent errors

Author

Listed:
  • Liu, Sisheng
  • Kong, Xiaoli

Abstract

In practice, it is common that errors are correlated for the nonparametric regression model. Although many methods have been developed for addressing correlated errors for tuning parameter selection to recover the mean response function, few studies have been proposed to select tuning parameters for derivative estimation. In this paper, a generalized correlated Cp (GCCp) criterion is proposed to choose a tuning parameter for derivative estimation in the presence of correlated errors. It can be applied for any nonparametric estimation linear in responses, including kernel regression, local regression, smoothing spline, etc. The GCCp criterion is justified both theoretically and empirically via simulation studies. Finally, an air quality index data example in Changsha city is provided to illustrate the application of the proposed criterion.

Suggested Citation

  • Liu, Sisheng & Kong, Xiaoli, 2022. "A generalized correlated Cp criterion for derivative estimation with dependent errors," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:csdana:v:171:y:2022:i:c:s0167947322000536
    DOI: 10.1016/j.csda.2022.107473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322000536
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick Carmack & Jeffrey Spence & William Schucany, 2012. "Generalised correlated cross-validation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 269-282.
    2. Byeong U. Park & Young Kyung Lee & Tae Yoon Kim & Cheolyong Park, 2006. "A Simple Estimator of Error Correlation in Non‐parametric Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 451-462, September.
    3. Tae Yoon Kim, 2004. "Nonparametric detection of correlated errors," Biometrika, Biometrika Trust, vol. 91(2), pages 491-496, June.
    4. Jan Beran & Yuanhua Feng, 2002. "Local Polynomial Fitting with Long-Memory, Short-Memory and Antipersistent Errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 291-311, June.
    5. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K De Brabanter & F Cao & I Gijbels & J Opsomer, 2018. "Local polynomial regression with correlated errors in random design and unknown correlation structure," Biometrika, Biometrika Trust, vol. 105(3), pages 681-690.
    2. Kim, Tae Yoon & Park, Byeong U. & Moon, Myung Sang & Kim, Chiho, 2009. "Using bimodal kernel for inference in nonparametric regression with correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1487-1497, August.
    3. Hans R. A. Koster & Jos N. van Ommeren & Piet Rietveld, 2016. "Historic amenities, income and sorting of households," Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 203-236.
    4. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.
    5. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    6. Tsimpanos, Apostolos & Tsimbos, Cleon & Kalogirou, Stamatis, 2018. "Assessing spatial variation and heterogeneity of fertility in Greece at local authority level," MPRA Paper 100406, University Library of Munich, Germany.
    7. Gao, Jiti & Robinson, Peter M., 2014. "Inference on nonstationary time series with moving mean," LSE Research Online Documents on Economics 66509, London School of Economics and Political Science, LSE Library.
    8. Don Harding, 2010. "Applying shape and phase restrictions in generalized dynamic categorical models of the business cycle," NCER Working Paper Series 58, National Centre for Econometric Research.
    9. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    10. Beran, Jan & Feng, Yuanhua, 2002. "Recent Developments in Non- and Semiparametric Regression with Fractional Time Series Errors," CoFE Discussion Papers 02/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    11. Suneel Babu Chatla, 2023. "Nonparametric inference for additive models estimated via simplified smooth backfitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 71-97, February.
    12. Vincenzo Loia & Stefania Tomasiello & Alfredo Vaccaro & Jinwu Gao, 2020. "Using local learning with fuzzy transform: application to short term forecasting problems," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 13-32, March.
    13. Juan Manuel Julio & Norberto Rodríguez & Héctor Manuel Zárate, 2005. "Estimating the COP Exchange Rate Volatility Smile and the Market Effect of Central Bank Interventions: A CHARN Approach," Borradores de Economia 2605, Banco de la Republica.
    14. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    15. Thomas M. Fullerton & Arturo Bujanda, 2018. "Commercial property values in a border metropolitan economy," Asia-Pacific Journal of Regional Science, Springer, vol. 2(2), pages 337-360, August.
    16. Li, Qi & Yang, Jian & Hsiao, Cheng & Chang, Young-Jae, 2005. "The relationship between stock returns and volatility in international stock markets," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 650-665, December.
    17. Henderson, Daniel J. & Polachek, Solomon W. & Wang, Le, 2011. "Heterogeneity in schooling rates of return," Economics of Education Review, Elsevier, vol. 30(6), pages 1202-1214.
    18. Cai Zongwu & Chen Linna & Fang Ying, 2012. "A New Forecasting Model for USD/CNY Exchange Rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-20, September.
    19. Shin Young Kim & Benedikt Sapotta & Gilsoo Jang & Yong-Heack Kang & Hyun-Goo Kim, 2020. "Prefeasibility Study of Photovoltaic Power Potential Based on a Skew-Normal Distribution," Energies, MDPI, vol. 13(3), pages 1-12, February.
    20. Asaftei, Gabriel & Parmeter, Christopher F., 2010. "Market power, EU integration and privatization: The case of Romania," Journal of Comparative Economics, Elsevier, vol. 38(3), pages 340-356, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:171:y:2022:i:c:s0167947322000536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.