IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v91y2004i2p491-496.html
   My bibliography  Save this article

Nonparametric detection of correlated errors

Author

Listed:
  • Tae Yoon Kim

Abstract

In regression problems it is hard to detect correlated errors since the errors are not observed. In this paper, a nonparametric method is proposed for the detection of correlated errors when the design points are equally spaced. It turns out that the first-order sample autocovariance of the residuals from the kernel regression estimates provides essential information about correlated errors and its bootstrap is quite effective in implementing such information. Copyright Biometrika Trust 2004, Oxford University Press.

Suggested Citation

  • Tae Yoon Kim, 2004. "Nonparametric detection of correlated errors," Biometrika, Biometrika Trust, vol. 91(2), pages 491-496, June.
  • Handle: RePEc:oup:biomet:v:91:y:2004:i:2:p:491-496
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Sisheng & Kong, Xiaoli, 2022. "A generalized correlated Cp criterion for derivative estimation with dependent errors," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    2. Kim, Tae Yoon & Park, Byeong U. & Moon, Myung Sang & Kim, Chiho, 2009. "Using bimodal kernel for inference in nonparametric regression with correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1487-1497, August.
    3. Tae Yoon Kim & Zhi‐Ming Luo, 2010. "Central limit theorems for nonparametric estimators with real‐time random variables," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 337-347, September.
    4. K De Brabanter & F Cao & I Gijbels & J Opsomer, 2018. "Local polynomial regression with correlated errors in random design and unknown correlation structure," Biometrika, Biometrika Trust, vol. 105(3), pages 681-690.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:91:y:2004:i:2:p:491-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.