Jackknife empirical likelihood inference with regression imputation and survey data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2014.04.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jing, Bing-Yi & Yuan, Junqing & Zhou, Wang, 2009. "Jackknife Empirical Likelihood," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1224-1232.
- Song Chen & Ingrid Van Keilegom, 2009. "A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 415-447, November.
- Jae Kwang Kim, 2011. "Parametric fractional imputation for missing data analysis," Biometrika, Biometrika Trust, vol. 98(1), pages 119-132.
- Yang, Hanfang & Zhao, Yichuan, 2013. "Smoothed jackknife empirical likelihood inference for the difference of ROC curves," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 270-284.
- Song Xi Chen & Hengjian Cui, 2006. "On Bartlett correction of empirical likelihood in the presence of nuisance parameters," Biometrika, Biometrika Trust, vol. 93(1), pages 215-220, March.
- Cheng Yong Tang & Yongsong Qin, 2012. "An efficient empirical likelihood approach for estimating equations with missing data," Biometrika, Biometrika Trust, vol. 99(4), pages 1001-1007.
- Wayne A. Fuller, 2009. "Some design properties of a rejective sampling procedure," Biometrika, Biometrika Trust, vol. 96(4), pages 933-944.
- Jae Kwang Kim & Jongho Im, 2014. "Propensity score adjustment with several follow-ups," Biometrika, Biometrika Trust, vol. 101(2), pages 439-448.
- Wang Q. & Linton O. & Hardle W., 2004.
"Semiparametric Regression Analysis With Missing Response at Random,"
Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
- Wolfgang Härdle & Oliver Linton & Wang, Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers CWP11/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Qin, Jing & Zhang, Biao & Leung, Denis H. Y., 2009. "Empirical Likelihood in Missing Data Problems," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1492-1503.
- Kim, Jae Kwang & Yu, Cindy Long, 2011. "A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 157-165.
- Jae Kwang Kim, 2004. "Fractional hot deck imputation," Biometrika, Biometrika Trust, vol. 91(3), pages 559-578, September.
- Wang Q. & Linton O. & Hardle W., 2004.
"Semiparametric Regression Analysis With Missing Response at Random,"
Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
- Wolfgang Härdle & Oliver Linton & Wang, Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers CWP11/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wolfgang Härdle & Oliver Linton & Wang & Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers 11/03, Institute for Fiscal Studies.
- Chen J. & Shao J., 2001. "Jackknife Variance Estimation for Nearest-Neighbor Imputation," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 260-269, March.
- Song Chen & Ingrid Van Keilegom, 2009. "Rejoinder on: A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 468-474, November.
- Song Xi Chen & Denis H. Y. Leung & Jing Qin, 2008. "Improving semiparametric estimation by using surrogate data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 803-823, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Harold D Chiang & Yukitoshi Matsushita & Taisuke Otsu, 2021. "Multiway empirical likelihood," Papers 2108.04852, arXiv.org, revised Aug 2024.
- Zhao, Yichuan & Meng, Xueping & Yang, Hanfang, 2015. "Jackknife empirical likelihood inference for the mean absolute deviation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 92-101.
- Heng Wang & Ping-Shou Zhong, 2017. "Order-restricted inference for means with missing values," Biometrics, The International Biometric Society, vol. 73(3), pages 972-980, September.
- Yukitoshi Matsushita & Taisuke Otsu, 2019. "Jackknife, small bandwidth and high-dimensional asymptotics," STICERD - Econometrics Paper Series 605, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Harold D Chiang & Yukitoshi Matsushita & Taisuke Otsu, 2021. "Multiway empirical likelihood," STICERD - Econometrics Paper Series 617, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Zhang, Xiuzhen & Lu, Zhiping & Wang, Yangye & Zhang, Riquan, 2020. "Adjusted jackknife empirical likelihood for stationary ARMA and ARFIMA models," Statistics & Probability Letters, Elsevier, vol. 165(C).
- Zhong Guan & Jing Qin, 2017. "Empirical likelihood method for non-ignorable missing data problems," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 113-135, January.
- Guo, Xu & Song, Lianlian & Fang, Yun & Zhu, Lixing, 2019. "Model checking for general linear regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 1-12.
- Chen, Sixia & Haziza, David, 2018. "Jackknife empirical likelihood method for multiply robust estimation with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 258-268.
- Yongcheng Qi, 2018. "Jackknife Empirical Likelihood Methods," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(2), pages 20-22, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bravo, Francesco & Escanciano, Juan Carlos & Van Keilegom, Ingrid, 2015. "Wilks' Phenomenon in Two-Step Semiparametric Empirical Likelihood Inference," LIDAM Discussion Papers ISBA 2015016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Yves G. Berger, 2020. "An empirical likelihood approach under cluster sampling with missing observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 91-121, February.
- Yu Shen & Han-Ying Liang, 2018. "Quantile regression and its empirical likelihood with missing response at random," Statistical Papers, Springer, vol. 59(2), pages 685-707, June.
- Zhao, Yichuan & Su, Yueju & Yang, Hanfang, 2020. "Jackknife empirical likelihood inference for the Pietra ratio," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Hui-Ling Lin & Zhouping Li & Dongliang Wang & Yichuan Zhao, 2017. "Jackknife empirical likelihood for the error variance in linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 151-166, April.
- Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015.
"Empirical likelihood for regression discontinuity design,"
Journal of Econometrics, Elsevier, vol. 186(1), pages 94-112.
- Taisuke Otsu & Ke-Li Xu, 2011. "Empirical Likelihood for Regression Discontinuity Design," Cowles Foundation Discussion Papers 1799, Cowles Foundation for Research in Economics, Yale University.
- Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015. "Empirical likelihood for regression discontinuity design," LSE Research Online Documents on Economics 58513, London School of Economics and Political Science, LSE Library.
- Yukitoshi Matsushita & Taisuke Otsu & Ke-Li Xu, 2014. "Empirical Likelihood for Regression Discontinuity Design," STICERD - Econometrics Paper Series 573, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Otsu, Taisuke & Matsushita, Yukitoshi & Xu, Ke-Li, 2014. "Empirical likelihood for regression discontinuity design," LSE Research Online Documents on Economics 58065, London School of Economics and Political Science, LSE Library.
- Yves G. Berger & Ewa Kabzińska, 2020. "Empirical Likelihood Approach for Aligning Information from Multiple Surveys," International Statistical Review, International Statistical Institute, vol. 88(1), pages 54-74, April.
- Bindele, Huybrechts F. & Nguelifack, Brice M., 2019. "Generalized signed-rank estimation for regression models with non-ignorable missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 14-33.
- Chen, Sixia & Haziza, David, 2018. "Jackknife empirical likelihood method for multiply robust estimation with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 258-268.
- Francesco Bravo, 2013. "Partially linear varying coefficient models with missing at random responses," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 721-762, August.
- Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015.
"High dimensional generalized empirical likelihood for moment restrictions with dependent data,"
Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
- Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2014. "High Dimensional Generalized Empirical Likelihood for Moment Restrictions with Dependent Data," MPRA Paper 59640, University Library of Munich, Germany.
- Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
- Li, Minqiang & Peng, Liang & Qi, Yongcheng, 2011. "Reduce computation in profile empirical likelihood method," MPRA Paper 33744, University Library of Munich, Germany.
- Zhang, Rongmao & Peng, Liang & Qi, Yongcheng, 2012. "Jackknife-blockwise empirical likelihood methods under dependence," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 56-72, February.
- Tong Tong Wu & Gang Li & Chengyong Tang, 2015. "Empirical Likelihood for Censored Linear Regression and Variable Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 798-812, September.
- Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
- Hong Guo & Changliang Zou & Zhaojun Wang & Bin Chen, 2014. "Empirical likelihood for high-dimensional linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(7), pages 921-945, October.
- Zhong Guan & Jing Qin, 2017. "Empirical likelihood method for non-ignorable missing data problems," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 113-135, January.
- Xue, Liugen & Zhang, Jinghua, 2020. "Empirical likelihood for partially linear single-index models with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Shuanghua Luo & Changlin Mei & Cheng-yi Zhang, 2017. "Smoothed empirical likelihood for quantile regression models with response data missing at random," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 95-116, January.
More about this item
Keywords
Kernel smoothing; Missing at random; Nonignorable missing; Response mechanism; Wilks’ theorem;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:129:y:2014:i:c:p:193-205. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.